Paleobiota of the Posidonia Shale
The Posidonia Shale or Posidonienschiefer Formation is a geological formation of southwestern Germany, northern Switzerland, northwestern Austria, southeast Luxembourg and the Netherlands, that spans about 3 million years during the Early Jurassic period (early Toarcian stage). It is known for its detailed fossils, especially sea fauna, listed below.[1] Composed mostly by black shale, the formation is a Lagerstätte, where fossils show exceptional preservation (Including exquisite soft tissues), with a thickness that varies from about 1 m to about 40 m on the Rhine level, being on the main quarry at Holzmaden between 5 and 14 m.[1] Some of the preserved material has been transformed into fossil hydrocarbon Jet, specially wood remains, used for jewelry.[2] The exceptional preservation seen on the Posidonia Shale has been studied since the late 1800s, finding that a cocktail of chemical and environmental factors let to such an impressive conservation of the marine fauna.[2] The most common theory is the changes on the oxygen level, where the different anoxic events of the Toarcian left oxygen-depleted bottom waters, with the biota dying and falling to the bottom without any predator able to eat the dead bodies.[3]
Part of a series on |
Paleontology |
---|
Paleontology Portal Category |
Microbial Activity
Color key
|
Notes Uncertain or tentative taxa are in small text; |
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Traces of Microbial Activity |
Non-fenestrate stromatolite crusts formed in Aphotic deep-water environments during intervals of very low sedimentation.[4] Abundant on the Precambrian, but after it, and concretely on the Jurassic-Cretaceous, the appearance of the Corallinaceae algae and related biota forced the stromatolite-forming microbes to withdraw to extreme habitats such as hypersaline lagoons and possibly to deep-water settings. On the Posidonia Shale are related with plankton, mainly coccoliths and the problematic Schizosphaerella (A Haptophytan Alga), but also typical deep-sea forms including various groups of cephalopods, and articulated skeletons of fishes and reptiles.[4] The Stromatolites of this region have evidence of live on a deeper shelf environment with a quietwater deposit which suffered repeated phases of stagnant bottom waters, where a depth water habitat developed, probably at more than 100 meters depth.[4] There is a thin, southern widespread Stromatolite crust on the Top of the Posidonia Shale, called "Wittelshofener Bank", that has made rethink the depth of the major southern basin of the formation, where with the absence of phototrophic calcareous benthic organisms (probably due to the lack of light), shows the deph character of the Basin.[4] On the "Wittelshofener Bank" there is also the only occurrence of Ooids, presumably formed in the same deep-water environment.[4] |
| |
Frutexites[4] |
|
|
Possible traces of Microbial Activity |
Probably related with Archaea activity.[4] Although Frutexites is a cryptic microfossil and an important element of many deep water stromatolites, with an Inorganic origin proposed, where are interpreted as dendritic shrubs to purely inorganic growth of Aragonitic crystals, but also resemble shrubs of the cyanobacteria Angulocellularia.[4] On the Posidonia a cryptoendopelitic mode of life is assumed, being only possible for Heterotrophic bacteria or Fungi.[4] As seen on the Stromatolites of the Posidonia, Frutexites acted mainly as a dweller or secondary binder of the deep-water stromatolites, not as their major constructor.[4] |
|
Rhizaria
Foraminifera
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|---|
Astacolus[5] |
|
|
|
Shells |
A benthonic Foraminiferan, member of Vaginulinidae inside the family Vaginulinida (Lagenina). An extant genus. Its shell resemble a mixture between an ammonite conch, due to having a lower spiral, and a mussel. |
|
Flabellinella[5] |
|
|
|
Shells |
A benthonic Foraminiferan, member of Vaginulinidae inside the family Vaginulinida (Lagenina). Its conch has a Myriapod-like segmented built. |
|
|
|
|
Shells |
A benthonic Foraminiferan, member of Vaginulinidae inside the family Vaginulinida (Lagenina). |
||
|
|
|
Shells |
A benthonic Foraminiferan, type member of Vaginulinidae inside the family Vaginulinida (Lagenina). |
||
|
|
|
Shells |
A benthonic Foraminiferan, member of Vaginulinidae inside the family Vaginulinida (Lagenina). |
||
Marginulina[6] |
|
|
|
Shells |
A benthonic Foraminiferan, member of Marginulininae inside the family Vaginulinida (Lagenina). |
|
Saracenaria[6] |
|
|
|
Shells |
A benthonic Foraminiferan, member of Lenticulininae inside the family Vaginulinida (Lagenina). |
|
Cornuspira[5] |
|
|
|
Shells |
A benthonic Foraminiferan, type member of Cornuspiridae inside the family Cornuspirida (Lagenina). Round-spiral shell morphology |
|
|
|
|
Shells |
A benthonic Foraminiferan, member of Nodosariidae inside the family Nodosariacea (Lagenina). Dentalina is an extant genus, with an elongated shell, that resemble a small worm. |
||
Pseudonodosaria[6] |
|
|
|
Shells |
A benthonic Foraminiferan, member of Nodosariidae inside the family Nodosariacea (Lagenina). |
|
Ichthyolaria[5] |
|
|
|
Shells |
A benthonic Foraminiferan, type member of Ichthyolariidae inside the family Lagenina. Another genus with a Myriapod-like segmented built. |
|
Lingulina[6] |
|
|
|
Shells |
A benthonic Foraminiferan, type member of Lingulininae inside the family Nodosariidae (Lagenina). Dentalina is an extant genus, with an elongated shell, that resemble a small worm. |
|
Reinholdella[5] |
|
|
|
Shells |
A benthonic Foraminiferan, member of Ceratobuliminidae inside the family Robertinida. It resembles a small ammonite. |
|
Dinoflagellata
Dinoflagellate cysts
The evolutionary burst of the Toarcian Dinoflajellates led the first appearance and rapid radiation of the Phallocystaceae (Susainium, Parvocysta, Phallocysta, Moesiodinium and related forms).[7] This occurred at the time of a wide-spread Lower Toarcian bituminous anoxia-derived shale of the Posidonienschiefer Formation. Is recovered on the Posidonienschiefer, Pozzale, Italy, Asturias, Spain, Bornholm, Denmark, the Lusitanian Basin of Portugal, the Jet Rock Formation in Yorkshire and to the "Schistes Carton" in northern France. Whether there is a causal connection in this co-occurrence of Phallocystaceae and bituminous facies is a problem still to be resolved. This family has its acme in diversity and quantity in the latest Toarcian and became less im-portant in the Aalenian.[7]
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|---|
|
|
|
Cysts |
A Dinoflagellate cyst, member of Dinophyceae of the family Nannoceratopsiaceae. On the Lias Epsylon Interval (Lowermost Toarcian), most of the assemblages are dominated by Nannoceratopsis gracilis. Nannoceratopsis senex becomes highly abundant until the uppermost Tenuicostatum.[8] |
||
Comparodinium[10] |
|
|
|
Cysts |
A Dinoflagellate cyst from the family Comparodiniaceae. |
|
|
|
|
Cysts |
A Dinoflagellate cyst from the family Comparodiniaceae. |
||
Apodinium[11] |
|
|
|
Cysts |
A Dinoflagellate cyst from the family Apodiniaceae. An Ectoparasitic dinoflagellate, whose hosts are normally Tunicates |
|
Eyachia[11] |
|
|
|
Cysts |
A Dinoflagellate cyst from the family Scriniocassiaceae. |
|
Argentiella[11] |
|
|
|
Cysts |
A Dinoflagellate cyst from the family Scriniocassiaceae. |
|
Scriniocassis[11] |
|
|
|
Cysts |
A Dinoflagellate cyst from the family Scriniocassiaceae. |
|
Balechiodinium[11] |
|
|
|
Cysts |
A Dinoflagellate cyst from the family Scriniocassiaceae. |
|
Moesiodinium[11] |
|
|
|
Cysts |
A Dinoflagellate cyst from the family Heterocapsaceae. |
|
Morgenrothia[11] |
|
|
|
Cysts |
A Dinoflagellate cyst from the family Heterocapsaceae. |
|
Susadinium[11] |
|
|
|
Cysts |
A Dinoflagellate cyst from the family Heterocapsaceae. |
|
Parvocysta[11] |
|
|
|
Cysts |
A Dinoflagellate cyst from the family Heterocapsaceae. |
|
|
|
|
Cysts |
A Dinoflagellate cyst from the family Gonyaulacaceae. |
||
|
|
|
Cysts |
A Dinoflagellate cyst from the family Phallocysteae. |
||
Weiachia[14] |
|
|
|
Cysts |
A Dinoflagellate cyst from the family Phallocysteae. The specific epithet, fenestrata, refers to the openings, or fenestrae, in the periphragm. |
|
|
|
|
Cysts |
A Dinoflagellate cyst, type member of Mancodiniaceae. Dominant genera on some layers of the Lias Delta Stage.[8] |
||
Maturodinium[9] |
|
|
|
Cysts |
A Dinoflagellate cyst, member of Mancodiniaceae. Commonly found along the genus Beaumontella.[9] |
|
|
|
|
Cysts |
A Dinoflagellate cyst, type member of Luehndeoideae. Luehndea spinosa is common on the medium layers of the lower Posidonia Shale, while restricted to some areas on the Lias delta.[8] |
||
Beaumontella[9] |
|
|
|
Cysts |
A Dinoflagellate cyst, member of Suessiaceae. Common on Pliensbachian levels, become present but rare on lower Toarcian.[9] |
|
Algae
Includes abundant variety of algae, such as the genus of colonial Green algae Botryococcus,[15] or the unicellular algal bodies Tasmanites, and other small examples. Algae are a good reference for changes on the oxygen conditions along the Toarcian.[16]
Algae Acritarchs
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|---|
|
|
|
Millions of specimens |
An Acritarch probably from Algal origin. Veryhachium fossils represent open marine and transgressive conditions. It has high presence on most of the samples studied from the Posidonia Shale, being nearly the 50% of the Acritarch fraction on some locations. |
||
|
|
|
Millions of specimens |
An Acritarch probably from Algal origin. Its fossils indicate nearshore or estuarine to shallow lagoon and/or slightly brackish-water environments. It is the dominant on the nearshore sections. |
||
Leiofusa[9] |
|
|
|
Millions of specimens |
An Acritarch probably from Algal origin. Related to estuarine deposits. |
|
Pterospermopsis[9] |
|
|
|
Millions of specimens |
An Acritarch probably from Algal origin. Related to open shelf deposits |
|
Cymatiosphaeropsis[17] |
|
|
|
Millions of specimens |
An Acritarch probably from Algal origin. Related to open shelf deposits |
|
|
|
|
Millions of specimens |
An Acritarch probably from Algal origin. Related to open shelf deposits |
||
Haptophyta
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|---|
Mitrolithus[18] |
|
|
|
Millions of specimens |
A member of the family Parhabdolithaceae inside Stephanolithiales. Shore deposits genus. The abundance drop of M. jansae further characterise the T-OAE perturbation, where becomes the dominant Genus on most of the Saxony Basin. |
|
Parhabdolithus[18] |
|
|
|
Millions of specimens |
Type member of the family Parhabdolithaceae inside Stephanolithiales. |
|
Schizosphaerella[18] |
|
|
|
Millions of specimens |
Type member of the family Schizosphaerellaceae inside Parhabdolithaceae. Towards the Pliensbachian-Toarcian extincion this genus gets a decrease in abundance and size that shows the change and biotic crisis. |
|
Biscutum[18] |
|
|
|
Millions of specimens |
Type member of the family Biscutaceae inside Parhabdolithaceae. |
|
Crepidolithus[18] |
|
|
|
Millions of specimens |
A member of the family Chiastozygaceae inside Eiffellithales. |
|
Chlorophyta
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|---|
|
|
|
Millions of specimens |
A member of Dinophyceae. |
||
|
|
|
Millions of specimens |
A member of Peridiniaceae inside Dinophyceae. |
||
|
|
|
Millions of specimens |
A member of Gonyaulacaceae inside Dinophyceae. |
||
|
|
|
Millions of specimens |
A member of Prasinophyceae. It the main genus present on silt and sand horizons, trending to be absent on black argillaceous layers. |
||
|
|
|
Millions of specimens |
A member of Prasinophyceae. A genus common on green clays and other upper strata on the formation. |
||
|
|
|
Millions of specimens |
A member of Prasinophyceae. A genus common on green clays and other upper strata on the formation. |
||
|
|
|
Millions of specimens |
A member of Prasinophyceae. A genus common on green clays and other upper strata on the formation. |
||
|
|
|
Millions of specimens |
A member of the Prasinophyceae. Basinal deposits genus |
||
Lancettopsis[17] |
|
|
|
Millions of specimens |
A member of the Prasinophyceae. Basinal deposits genus |
|
Nostocopsis[17] |
|
|
|
Millions of specimens |
A member of the Prasinophyceae. Basinal deposits genus |
|
Granodiscus[17] |
|
|
|
Millions of specimens |
A member of the Prasinophyceae. Basinal deposits genus |
|
Tytthodiscus[17] |
|
|
|
Millions of specimens |
A member of the Prasinophyceae. Basinal deposits genus |
|
Cymatiosphaera[8] |
|
|
|
Millions of specimens |
A member of the family Pyramimonadales inside Prasinophyceae. Basinal deposits genus |
|
Halosphaeropsis[8] |
|
|
|
Millions of specimens |
A member of the family Halosphaeraceae inside Chlorodendrales. Basinal deposits genus |
|
|
|
|
Millions of specimens |
Type member of the family Botryococcaceae inside Trebouxiales. Freshwater or Deltaic Genus |
| |
Plantae
The macroflora of the Posidonia slate can be described as extremely poor in species.[21] Apart from the remains of Horsetails, it is without exception the remains of coarse branches and fronds from gymnosperms, in which one has a certain can assume transport resistance. Remains of Ferns are completely missing, except for tall arboreal ferns (Peltaspermales).[22] Mostly of the flora was reported from the area of Braunschweig.[21] The major explanation for the flora could be that the plants in question are mono-or oligotypic stands on the edge of the waters that flow into the Posidonienschiefer sea, probably tear away in the course of flood events, easily fragmented during transport and wave waves, possibly especially in the occasional storm events postulated.[23] In terms of taphonomy, this would result in a comparison with today's reed Phragmites, which can form extensive stocks on the edge of shallower and slowly flowing waters ("Reed belts").[21] The Wood remnants clearly indicate one higher diversity of Coniferous flora in the delivery area than the remains of leafy branches.[21] This fact is likely to be proportionate, similar to that frequent occurrence of charcoalized or gagged trunks, mostly of them are believed to be "driftwoods" that only take a long time drifting also suggests a frequent settlement with mussels and full-grown Sea Lilies.[21][23] The deposition settings are at large distance from the nearest coastline (for southern Germany about 100 kilometers), making only plants strong to transportation able to resist enougth to get deposited.[24][25]
Palynology
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|---|
Foraminisporis[26] |
|
|
|
Spores |
Affinities with Sphagnopsida inside Bryophyta. |
|
|
|
|
Spores |
Affinities with Lycopsida inside Lycophyta. The most common Lycopsid Spore on the samples recovered on the formation. |
| |
Heliosporites[26] |
|
|
|
Spores |
Affinities with Lycopsida inside Lycophyta. Herbaceous flora coming from environments with high humidity |
|
Leptolepidites[26] |
|
|
|
Spores |
Affinities with Lycopsida inside Lycophyta. Herbaceous flora coming from environments with high humidity |
|
Lycospora[26] |
|
|
|
Spores |
Affinities with Lycopsida inside Lycophyta. Herbaceous flora coming from environments with high humidity |
|
Neochomotriletes[26] |
|
|
|
Spores |
Affinities with Lycopsida inside Lycophyta. Herbaceous flora coming from environments with high humidity |
|
Uvaesporites[26] |
|
|
|
Spores |
Affinities with Lycopsida inside Lycophyta. Herbaceous flora coming from environments with high humidity |
|
Zebrasporites[26] |
|
|
|
Spores |
Affinities with Lycopsida inside Lycophyta. Herbaceous flora coming from environments with high humidity |
|
Retitriletes[26] |
|
|
|
Spores |
Affinities with Lycopodiaceae inside Lycopodiopsida. Represents herbaceous Lycophytes of small to medium size (10–40 cm), that are found mostly on deltaic deposits. |
|
Simozonotriletes[26] |
|
|
|
Spores |
Affinities with Lycopodiaceae inside Lycopodiopsida. Represents herbaceous Lycophytes of small to medium size (10–40 cm), that are found mostly on deltaic deposits. |
|
Verrucosisporites[26] |
|
|
|
Spores |
Affinities with the Isoetales inside Lycophyta. |
|
Echitriletes[27] |
|
|
|
|
Affinities with Isoetaceae inside Lycopsida. |
|
Trilites[26] |
|
|
|
Spores |
Affinities with the Selaginellaceae inside Lycopsida. |
|
|
|
|
Spores |
Affinities with the Schizaeaceae inside Schizaeales. |
| |
Densoisporites[26] |
|
|
|
Spores |
Affinities with the Schizaeaceae inside Schizaeales. |
|
|
|
|
Pollen |
Affinities with Gymnospermophyta. Non concreted affinities |
||
Baculatisporites[26] |
|
|
|
Spores |
Affinities with Pteridopsida. |
|
Polycingulatisporites[26] |
|
|
|
Spores |
Affinities with Pteridopsida. |
|
Leiotriletes[26] |
|
|
|
Spores |
Affinities with Pteridopsida. |
|
Converrucosisporites[26] |
|
|
|
Spores |
Affinities with Pteridopsida. |
|
Contignisporites[26] |
|
|
|
Spores |
Affinities with Pteridopsida. |
|
Lycopodiacidites[26] |
|
|
|
Spores |
Affinities with the Ophioglossaceae inside Filicopsida. Spores related with modern floor Ferns, that appear on abundant water locations. |
|
Gleicheniidites[26] |
|
|
|
Spores |
Affinities with the Gleicheniaceae inside Polypodiidae. Resemble the modern Gleichenia Spores, and proably represent a similar genus or a member of it. Fern related to large colonies, found mostly on humid environments. |
|
Clavatipollenites[26] |
|
|
|
Pollen |
Affinities with Gnetopsida and probably Gnetophyta. Has Been considered Pollen of Chloranthaceae. However, it is to old for belonging to advanced Angiosperms. It probably comes from cones related to the Genera Piroconites kuesperti from the Lowermost Jurassic of Germany, resembling pollen of extant Ephedra and Welwitschia. |
|
Ephedripites[26] |
|
|
|
Pollen |
Affinities with the Chlamydospermae inside Gnetales. Identified originally as Pollen coming from the extant Ginkgo biloba, was later found to be misidentified. It was later found that Aphlebia lautneri from the Hettangian of Franken (Germany) has microsporophylls covered on one surface with synangia consisting of three adnate pollen sacs, yielding Ephedripites pollen.[29] |
|
|
|
|
Pollen |
Type Pollen of the Erdtmanithecales, that can be related with the Gnetales. Thick tectum, infratectum of small granules, indistinct or absent foot layer. Originally was thought to come from Angiosperms, latter reports suggest it come from arbustive Bennetites.[30] It was recently found to come from Eucommiitheca, member of the enigmatic Erdtmanithecales, reinterpreted as an unusual gymnosperm grain with a single distal colpus flanked by two subsidiary lateral colps.[31] Is very similar to the Pollen of the extant Ephedra and Welwitschia (mainly on the granular structure of the exine).[32] |
||
Quadraeculina[26] |
|
|
|
Pollen |
Affinities with Pinaceae inside Coniferae. Pollen From arbustive to arboreal plants, resembling the modern genus Picea |
|
|
|
|
Pollen |
Affinities with the Pinidae inside Coniferae. |
| |
|
|
|
Pollen |
Affinities with Pinaceae inside Coniferae. |
| |
|
|
|
Pollen |
Affinities with the Pinidae inside Coniferae. Abundant on the Lower Jurassic of NW Europe, represents pollen of medium to large arboreal plants, specially coniferales. |
| |
Sciadopityspollenites[27] |
|
|
|
Pollen |
Affinities with the Sciadopityaceae inside Coniferae. Abundant on the Toarcian of the North Atlantic margin, specially allocated on Sweden and Bornholm. Represents pollen of medium to large arboreal plants, specially coniferales. |
|
Cerebropollenites[26] |
|
|
|
Pollen |
Affinities with Abietoideae inside Coniferae. Pollen From arbustive to arboreal plants, resembling the pollen of the modern genus Tsuga. The differences observed between Cerebropollenites and Tsuga are no greater than the differences observed between the pollen of the two Sections of Tsuga, Hesperopeuce and Micropeuce. |
|
|
|
|
Pollen |
Affinities with Cheirolepidiaceae inside Pinaceae. Abundant on the Lower Jurassic of NW Europe. Spheripollenites co-occurs on the coeval Sorthat Formation with cuticles of Dactyletrophyllum ramonensis, and after a test of relationships it was found a highly significant correlation may suggest that S. psilatus is produced by the conifer genus Dactyletrophyllum.[33] |
||
Classopollis[17] |
|
|
|
Pollen |
Affinities with Cheirolepidiaceae inside Coniferae. Abundant on the Lower Jurassic of North and Southern Europe, represents pollen of medium to large arboreal plants, specially coniferales. The abundance of pollen of Classopollis and other thermophile plants was observed in this region in the lower Toarcian from the end of the antiquum (= tenuicostatum) zone to the middle of commune zone.[34] |
|
|
|
|
Pollen |
Affinities with Cheirolepidiaceae inside Coniferae. Pollen of medium to large arboreal plants, specially coniferales. |
||
|
|
|
Pollen |
Affinities with Podocarpaceae inside Pinopsida. Pollen From arbustive to arboreal plants |
| |
Equisetaceae
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|---|
|
|
|
Stems |
Affinities with Equisetaceae inside Equisetopsida. Number of mostly very fragmented and not particularly well preserved, but clear horsetail remains described. So far recognizable, leaf sheaths where developed in most cases, but the state of preservation does not allow a more precise determination.[35] |
||
|
|
|
Stems and incomplete axes |
Affinities with Equisetaceae inside Equisetopsida. Neocalamites is the most common more distributed of all the Posidonia Shale, being even found on Luxembourg Posidonia Strata.[36] Mostly of the Stems reported come from Aeolian-Dunar related deposits, or from nearshore-basinal deposition. Probably was related to the seashore.[36] Some stems are big, resembling the rates of growth seen on modern Bamboo specimens, suggesting +6–7 m tall Equisetopsids.[36] |
| |
Palaeostachya?[37] |
|
|
|
Pollen Cones |
Affinities with Calamitaceae inside Equisetopsida. It was an approximately 2–3 m high shrub-like plant related to swamp environments. Calamitaceans are common in late Palaeozoic wetland plant communities, so the find of a jurassic specimen is rare.[37] Maybe is a mistaken new genera of Pollen cone, but definitely come from an Equisetalean. This genus is found associated with Annularia, being both part of the Calamites plant. It can be related with the Equisetites stems found on the formation. |
|
Pteridospermatophyta
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|---|
|
|
|
|
Affinities with Umkomasiaceae inside Corystospermaceae. Is based on bipinnate leaves, rachis longitudinally striated, with a long petiole and secondary rachises. It belongs to large tree ferns. Posidonia Shale Specimen is characterized for its large size and probably where attached to trunks similar in built to the Cretaceous genus Tempskya.[38] |
| |
Cycadeoidophyta
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|---|
|
|
|
|
Affinities with Cycadeoidaceae inside Bennettitales. It is the most abundant medium-sized plant on the environment. Found specially on seashore depositional settings, but also on deltaic and lagoonar environments. It was a low arbustive-arboreal Bennetite related to arid environments, with a leave similar of that of the modern genus Encephalartos, specially Encephalartos munchii, but also Dioon mejiae. Otozamites has been considered synonym with Otopteris, but since the 1990s everybody used the name Otozamites, and Otopteris was forgotten.[41] |
| |
|
|
|
|
Affinities with Cycadeoidaceae inside Bennettitales. This Bennettitalean is related to Shrub built. Some specimens were assigned to Dioonites acutifolium (Junior synonym). Consits on leaves with pinnate, leaflets perpendicular or oblique to the rhachis, on the top of the leaf axis. It comes from fragments of fairly large fronds. In its external form it closely follows the modern genus Dioon, only the leaflets are of our kind wider and shorter, they are further apart, but the tendency to rhachis is the same. |
| |
|
|
|
|
Affinities with Williamsoniaceae inside Bennettitales. Arboreal Cycadaceans, some with the presence of flower-like structures. It resembles the leaf of the modern Microcycas calocoma, and probably had a similar arboreal built, being the leave of tall Bennetite trees such as Bucklandia, found on the middle jurassic of England. |
| |
|
|
|
|
A member of Williamsoniaceae inside Bennettitales. It has been interpreted as a cycad in the family Cycadaceae or a Bennettitalean plant. Leaflets somewhat removed, oval-oblong, a little narrower near the base, rounded at the tip, nerves partially diverging from the base towards the edge. It was assigned to Pterophyllum oblongifolium and on the genus Glossozamites. This genus was the leaf of arboreal Bennetites, similar in appearance to the modern Encephalartos woodii. |
| |
Ginkgoales
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|---|
|
|
|
|
Affinities with Ginkgoaceae inside Ginkgoales. Various leaves are known from Ohmden, coming from marine deposits and where identified as Ginko digitata, identified originally as the only Ginko specimen reported on the Posidonia Shale. In the Posidonia Shale of southern and northern Germany, there are regular remains of coal, which are initially reminiscent of small Ginkgo leaves. The leaves are hard to identify, more or less regularly concentric structures, as they sometimes appear like the coarse fruiting bodies of wood-dwelling fungi, such as the genus Trametes. |
| |
Pinophyta
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|---|
|
|
|
|
Affinities with Araucariaceae or Cheirolepidiaceae inside Pinales. Pagiophyllum araucarinum predominates among the two types of leafy coniferous branches that have become known from the Posidonia. However, there is no indication whether this fact reflects their respective share in the vegetation of the delivery area. Cheirolepidiaceae Pollen is the most abundant and diverse found on the formation, what is correlated with the abundance of this genus. Other factor that puts local Pagiophyllum on Cheirolepidiaceae is the dominance of an arid climate, the preferred for this type of conifers. |
| |
|
|
|
|
Affinities with Araucariaceae or Cheirolepidiaceae inside Pinales. Specimens whose spiral foliage of the branch, in which the individual leaves open about 2/3 of their length (without the tip) are fused with the branch they hold in their free part fits tightly, suggests belonging to the genus Brachyphyllum. |
||
Hirmerella[21] |
|
|
|
Ovuliferous dwarf-shoots |
Affinities with Cheirolepidiaceae. Is the type genus of this family, and is related with Arid Settings. Coming from The land-plant-taphocoenose from posidonia slate 3, is ready for processing. |
|
|
|
|
|
A possible ancestral member of the Callitroideae inside Cupressaceae. Was originally related to the genus "Quasisequoia" couttsiae, as a sister taxa to Sequoia jeholensis. The leaves of this genus however resemble the modern African conifer Widdringtonia. There studies suggesting affinities with large modern redwoods or with the modern genus Fitzroya cupressoides. But both Genera are related with relatively humid ecosystems, while Widdringtonites is known from an Arid setting, like Widdringtonia, so relationships with this last one are more probably. |
| |
Fossil Wood
Genus | Species | Location | Stratigraphic position | Material | Notes | Images |
---|---|---|---|---|---|---|
|
|
|
Fossil wood |
Affinities with the Taxodioideae family inside Cupressaceae. Resembles the modern genus Cryptomeria, but others resemble the southern genus Fitzroya, from the family Callitroideae. Large trees probably related to the coastal settings. |
||
|
|
|
Fossil wood |
Affinities with Cupressaceae. Large wood with a morphology similar to the modern genus Sequoia sempervirens. Probably related to Widdringtonites liasinus, representing the earliest representatives of the Sequoia tribe. |
||
|
|
|
Fossil wood |
Affinities with Podocarpaceae. It shares characters with modern Sciadopitys, Microcachrys, Dacrydium and Acmopyle. |
||
|
|
|
Fossil Wood |
Affinities with Podocarpaceae, resembling modern genera such as Dacrycarpus, with other specimens resembling Juniperus. Includes wood more related to nearshore arbustive Conifers (columnar or low-spreading Shrubs with long, trailing branches), being the most abundant, but also medium to large arboreal conifers from nearshore forests. |
| |
|
|
|
Fossil wood |
Affinities with Podocarpaceae. Similar to the modern Phyllocladus aspleniifolius. |
||
|
|
|
Fossil wood |
Affinities with Podocarpaceae. Resembles the modern Phyllocladus hypophyllus. |
| |
|
|
|
Fossil wood. |
Affinities with Araucariaceae. The largest known rafting wood on the fossil record is assigned to this genus, with a length of 18 m. The rafts were populated with Crinoid colonies, and a wide variety of organisms.[48] |
| |
|
|
|
Fossil wood |
Affinities with Cheirolepidiaceae. Includes large sized trunks up to 1.7 m tall and 115 cm wide. Large medium to large sized trees (25 m) that extent along the coastal lines of the Vindelician land. The wood from tose trunks shows insect activity, such as wood Vasps and Beetles, that had been found on the Posidonia Shale. |
| |
|
|
|
Fossil wood |
Affinities with Cheirolepidiaceae |
||
|
|
|
Fossil wood |
Dubious genera with possible affinities with the triassic wood Woodworthia. Protopinaceae is an invalid group of mostly Paleozoic Woods.[55] |
| |
|
|
|
Fossil wood |
Affinities with Coniferales, concretely is closer to the Podocarpaceae, Cupressaceae and in a lesser extend to the Cheirolepidiaceae. Finally can be a member of the extinct family Miroviaceae. It is the more abundant genus of wood present on the Bohemian Realm of the Posidonia Shale. |
||
Invertebrata
Ichnofossils
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Burrowing and track ichnofossils |
Burrow-like ichnofossils, that can be related to Crustaceans, Annelids and Fishes.[59] The presence of this burrows changed along the different depositional layers, interpreted as result of relative magnitudes and durations of a series oxygenation events.[59] Increased Oxygen conditions eventually led to a level that permitted both the survival of larger Chondrites and Thalassinoides producing organisms, as well the depth of the Burrow-like structures.[59] The changes on the layers are detailed enough to know that oxygenation-change events duration was sufficient to allowe the migration and establishment of trace-producing organisms, establishing an "equilibrium" with bottom-water oxygen conditions.[59] |
| |
|
|
Burrowing and track ichnofossils |
Burrow-like ichnofossils. Interpreted as the feeding burrow of a sediment-ingesting animal.[61] A more recent study has find that Scoloplos armiger and Heteromastus filiformis, occurring in the German Wadden Sea in the lower parts of tidal flats, make burrows that are homonymous with numerous trace fossils of the ichnogenus.[62] Chondrites burrows from Holzmaden are mostly filled with granular Calcite crystals, clay minerals, and rare framboidal Pyrite. The local dysoxic seawater is reflected on the palaeoredox conditions, relating framboidal pyrite and biogenic processes. Chondrites appear to be capable of colonizing environments characterized by oxygen levels well below levels needed for survival of other animals, being considered a “extremotolerant” ichnotaxon.[63] |
| |
Phymatoderma[64] |
|
|
Burrowing and track ichnofossils. |
Burrow-like ichnofossils. It consists commonly on a subhorizontal branching burrow system consisting of radiating tunnels filled with fecal pellets.[64] It has been interpreted as a product made by an Endobenthic deposit-feeding animal, specially a Fodinichnia, burrows produced by benthonic subsurface food-mining activity, as is proved by the tunnels and pelletal infill.[64] The study of the Fecal Pellets has revelated that the maker of this ichnogenus was an epicontinental shelf setting non-selective deposit feeder, ingesting particles on the sediment surface without selection. A mode of feeding common on aquatic Benthos, reported on modern animals such as Spionid Polychaete worms, tropical Holothurians and Spatangoid urchins.[65] |
|
|
|
Burrowing and track ichnofossils.[67] |
Burrow-like ichnofossils. It has been related to Echiuran annelids,[68] but also from moving and feeding polychaete worms.[69] |
| |
Fucoides[67] |
|
|
Burrowing and track ichnofossils. |
Burrow-like ichnofossils. Considered an "Algae incertae sedis" fossil, it was recovered subdivided into 16 different groups, being in 1880 along certain ichnofossil genera, such as Cruziana with a massive nomenclatural complexity. Considered now a feeding burrow of a sediment-ingesting animal, sometimes synonymized with Chondrites. |
|
|
|
Burrowing and track ichnofossils. |
Burrow-like ichnofossils. It is controversial, since is considered a strictly a junior synonym of Palaeophycus.[71] |
| |
Palaeophycus[72] |
|
|
Burrowing and track ichnofossils. |
Burrow-like ichnofossils. Palaeophycus is considered related with Planolites, being a litoral fodichnia, probably from a Priapulidan. |
|
|
|
Burrowing and track ichnofossils. |
Burrow-like ichnofossils. It is interpreted as a grazing trail or Fodinichnia, produced at shallow depth in sediment by Polychaetes and Priapulids.[72] |
| |
Gyrochorte[72] |
|
|
Burrowing and track ichnofossils. |
Burrow-like ichnofossils. Gyrochorte is interpreted as a result of active digging on the sediment by deposit-feeding worm-like animal, probably an Annelid or similar kinds of creatures, such as Crustaceans, Sea Urchins, nearshore fishes, etc. |
|
Cylindrichnus[72] |
|
|
Burrowing and track ichnofossils. |
Burrow-like ichnofossils. Cylindrichnus isp. was found only on seashore-related sections, and probably represents litoral Polychaete Burrows.[73] |
|
|
|
Burrowing and track ichnofossils. |
Burrow-like ichnofossils. Vertical or oblique complex trace fossil composed of a bunch of spindle-shaped structures and associated tubes, typical of a restricted environment (?estuarine/lagoonal). |
||
Spongeliomorpha[72] |
|
|
Burrows and associated traces |
Burrow-like ichnofossils. Spongeliomorpha is believed to come from the domicile of Crustaceans: Anomuras (Probably Eocarcinoidea) and Decapodans (Probably Glypheidae), created as they dig in a firm, semiconsolidated substrate. |
|
|
|
Burrows and associated traces |
Burrow-like ichnofossils. Most Diplocraterion show only protrusive spreit, like the local ones, produced under predominantly erosive conditions where the organism was constantly burrowing deeper into the substrate as sediment was eroded from the top. It can be Made by Crustaceans, Annelids or other benthic fauna.[72] |
| |
Anthozoa
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Polyps |
A stone cora of the family Caryophylliidae inside Hexacorallia. Related to shallow waters, this genus is the main coral found on the Posidonia Shale, resembling the modern Polycyathus muellerae. Its fossils are related with near-land facies, Coralline Islands and relatively small landmases shuch as the Bohemian Massif. |
| |
Porifera
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Specimens |
A sea sponge of the family Cribrospongiidae inside Sceptrulophora. Found on Shallow and basinal waters, some specimens get 22 cm wide, with a funnel-like morphology. It is relatively common on nearshore strata, but generally rare. |
| |
Stauroderma[37] |
|
|
Specimens |
A sea sponge (Glass sponge) of the family Staurodermatidae inside Hexactinellida. Found only on depth Basinal deposits, with a funnel like morphology attaining a diameter of at least 15 cm, with the exception of a large specimen of 30 cm diameter found on Dotternhausen. |
|
Annelida
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Multiple Specimens. |
A sessile, marine annelid tube worm of the family Serpulidae. Its affinities with the genus Serpula are controversial, since the genus is known mostly since Creataceus strata. Although there are other fossils assigned to the genus on same age deposits of France.[76] |
| |
|
|
Multiple Specimens. |
A sessile, marine annelid tube worm of the family Serpulidae |
||
Tetraserpula[79] |
|
|
Multiple Specimens. |
A sessile, marine annelid tube worm of the family Serpulidae. |
|
|
|
Multiple Specimens. |
A sessile, marine annelid tube worm of the family Serpulidae. It show the characteristic features to live on soft mud ground. |
||
|
|
Multiple Specimens. |
A sessile, marine annelid tube worm of the family Serpulidae. It show the characteristic features to live on soft mud ground. |
||
|
|
Multiple Specimens. |
A sessile, marine annelid tube worm of the family Serpulidae. Pentaditrupa managed to lie freely on the mud, as shows that its tube's curvature provides stability to its position. |
||
|
|
Multiple Specimens. |
A sessile, marine annelid tube worm of the family Serpulidae. Denominated "Serpula" segmentata, it lacks the two longitudinal edges characteristic on Mucroserpula. |
||
|
|
Multiple Specimens. |
A polychaete worm of the family Sabellidae. |
| |
Dictyothylakos[84] |
|
|
Leech cocoons |
Hirudinea cocoons, identified with palynological residues. The cocoons Dictyothylakos are common on flooded basin sediments, and implies not only the presence of parasitic leeches, but also the presence of large hosts nearby. |
|
Brachiopoda
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Shells |
A pennospiriferinid rhynchonellatan.[91] |
||
|
|
Shells |
A Discinidae rhynchonellatan. This genus was found had a planktotrophic larval stage, that adapted while growing to the local redox boundary, when this fluctuated near the sediment–water interface and oxygen availability prevailed, allowing benthic colonization. Is found on associations with Grammatodon and Pseudomytiloides.[91] |
||
|
|
Shells |
A Lingulidae rhynchonellatan. Associations of bioturbation infauna are dominated on certain sections by Palaeonucula/Lingula agrupations, developed under longer-term oxygenated conditions within the substrate and bottom waters.[91] |
||
|
|
Shells |
A Rhynchonellidae rhynchonellatan. Found associated with Plicatula on long-term well-oxygenated conditions within the substrate and bottom waters.[91] |
||
Bivalvia
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Thousands of Specimens. |
An oxytomid scallop. |
| |
Praearctotis[92] |
|
|
Thousands of Specimens. |
An oxytomid scallop. Found mostly on the "Dactylioceras-Monotis-Bank", a deposit derived from large scale tectonic events on the Bohemian coastline |
|
|
|
Thousands of Specimens. |
An oxytomid scallop. |
||
|
|
Thousands of Specimens. |
A pectinoid scallop. |
| |
|
|
Thousands of Specimens. |
A pectinoid scallop. |
||
|
|
Thousands of Specimens. |
A propeamussiid mud scallop. |
| |
|
|
Thousands of Specimens. |
A plicatulid mud scallop. |
||
|
|
20.000 specimens/m2 |
A "posidoniid" ostreoidan. It is the type fossil of the Posidonia Shale. Originally it was named "Posidonia bronni", thought to be a new genus, and the strata was denominated the Posidonia layers after it. Years later it turned out to be a junior synonym of Bositra, and thus, it was reassigned. However, the name of the layers was retained. The habitat and mode of life of Bositra has been debated for more than a century. There have been different interpretations, such as a pseudoplanktonic organism,[94] a benthic organism[95] related to open marine floor, where it was the main inhabitant of the basinal settings,[96][97] a free swimming mode of life filtering phytoplankton,[93] and a hybrid mode, where it has a life cycle with holopelagic reproduction controlled by the change on Oxygen levels,[98] and even a chemosymbiotic lifestile, related to the large crinoid rafts, being the main "Safe conduct" to evade anoxic events.[99] All the opinions along the years led to a large study in 1998, where the size/frequency distribution, the density of growth thanks to the lines related to the shell size and the position of the redox boundary by total organic carbon diagrams has revealed that Bositra probably had a benthic mode of life.[100] |
| |
|
|
Thousands of Specimens. |
A "posidoniid" ostreoidan. Another Genera mistaken with "Posidonia bronni". |
| |
|
|
Thousands of Specimens. |
A bakevelliid mud oyster. |
||
|
|
Thousands of Specimens. |
| ||
|
|
Thousands of Specimens. |
| ||
|
|
Thousands of Specimens. |
An inoceramid clam. Being the second most common genera of Bivalve on the Formation, it had been object to several studies to find its ecological niche, like Bositra. Several opinions include a pseudoplanktonic-only organism, able to live in open sea,[97] or a benthonic-only organism.[96] On the 1998 evaluation with Bositra, was found that probably has a benthic early life that translated to a faculatively pseudoplanktonic mode of adult life.[100] |
| |
|
|
Thousands of Specimens. |
An inoceramid clam. |
| |
|
|
Thousands of Specimens. |
|||
|
|
Thousands of Specimens. |
A Clam, type member of the family Solemyidae inside Solemyida. |
| |
|
|
Thousands of Specimens. |
|||
|
|
Thousands of Specimens. |
A cucullaeid clam. |
||
|
|
Thousands of Specimens. |
|||
|
|
Thousands of Specimens. |
A pholadomyid clam. |
||
|
|
Thousands of Specimens. |
A Grammatodontinae clam. This Genus had a lecithotrophic and planktotrophic larval development.[91] |
||
|
|
Thousands of Specimens. |
A mactromyid clam. |
||
|
|
Thousands of Specimens. |
A pleuromyid clam. |
| |
|
|
Thousands of Specimens. |
| ||
|
|
Thousands of Specimens. |
A pennospiriferinid rhynchonellatan. |
||
Gastropoda
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
|
A Coelodiscidae sea Snail. The is the oldest known holoplanktonic gastropod, thanks to a bilateral symmetrical shells as an adaption to active swimming. Also the most common of the sea snails of the Formation, it is also one of the most varied in size terms, with some of the biggest specimens of snail from the Lower Toarcian know.[103] It has been related to large floating driftwood as one of the primary settlers.[103] |
||
Tatediscus[104] |
|
|
Shells |
A Coelodiscidae sea Snail. Possible holoplanktonic gastropod.[103] |
|
|
|
Shells |
A Procerithiidae sea Snail. |
||
Toarctocera[105] |
|
|
Shells |
An Aporrhaidae sea Snail. Among the latest described from the formation, is one of the earliest certain aporrhaidae. Characterised by large spines growing at the head of the cunch. |
|
|
|
Shells |
A Cryptaulacidae sea Snail. |
||
|
|
Shells |
A Neritariidae sea Snail. |
| |
|
|
Shells |
A Zygopleuridae sea Snail. |
| |
|
|
Shells |
A Zygopleuridae sea Snail. |
||
|
|
Shells |
| ||
|
|
Shells |
A Trochidae sea Snail. Characterised by a rhomboid scaly pattern on the teleoconch whorls. |
||
|
|
Shells |
A Pleurotomariidae sea Snail. |
| |
Ptychomphalus[85][86][104] |
|
|
Shells |
An Eotomariidae sea Snail. |
|
|
|
|
A Pterotracheidae sea Slug. Among the oldest pelagic floating Slugs, Pterotrachea liassica had a more extended larval period than modern extant Pterotrachea coronata, because one additional whorl is Present.[106] |
| |
Cephalopoda
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
|
A Nautilidae Nautilidan. Includes the largest specimen of Cenoceras known, with 80 cm width. |
| |
|
|
|
A Lytoceratidae Ammonite. Lytoceras can get quite big, with nearly 50 cm in diameter. |
||
|
|
|
|||
|
|
|
|||
|
|
|
| ||
|
|
|
| ||
|
|
|
|||
Pseudogrammoceras[110] |
|
|
|
||
Hudlestonia[108] |
|
|
|
||
Catulloceras[108] |
|
|
|
||
Cotteswoldia[108] |
|
|
|
||
|
|
|
| ||
|
|
|
| ||
|
|
|
| ||
|
|
Complete Shells |
| ||
Eleganticeras[113] |
|
|
|
||
|
|
|
|||
|
|
|
| ||
|
|
|
A Dactylioceratidae Ammonite. Is common on the bituminous marls (incorrectly designated as “Wilder Schiefer”) of the Altdorf High. |
||
|
|
|
|||
|
|
|
Type Coeloceratidae Ammonite. |
||
|
|
|
A Phylloceratidae Ammonite. The largest ammonite found in the Posidonienschiefer comes from the Ohmden quarry,and belongs to a Phylloceras heterophyllum with a diameter of 87 cm.[113] |
| |
|
|
|
A Phymatoceratidae Ammonite. |
||
|
|
|
A Phymatoceratidae Ammonite. |
||
|
|
|
A Phymatoceratidae Ammonite. |
||
Chitinobelus[117] |
|
|
|
A Belemnotheutidae Belemnite. Chitinobelus is an extrange fossil, sice the rostrum was composed of aragonite with organic material, while normal Belemnites had calcite. Has been suggested this rostrum was calcitic. |
|
|
|
|
A Belemnotheutidae Belemnite. |
||
|
|
|
A Belemnotheutidae Belemnite. |
||
|
|
|
A Megateuthididae Belemnite. Includes some of the Biggest Know Belemnites, with an estimated maximum up to 4.5 m long in life, although, most specimens would have been rather smaller. |
||
|
|
|
A Megateuthididae Belemnite. |
||
|
|
|
A Megateuthididae Belemnite. Includes really large specimens |
| |
|
|
|
A Passaloteuthididae Belemnite. |
| |
|
|
|
A Salpingoteuthididae Belemnite. |
| |
Loligosepia[123] |
|
|
|
A Loligosepiidae Loligosepiidan (Vampyromorpha).[124] The Loligosepiidae is believed to be ancestral to the Recent vampire squid, Vampyroteuthis infernalis.[125] |
|
|
|
|
A Loligosepiidae Loligosepiidan (Vampyromorpha). Related to the modern Vampyroteuthis infernalis. Gladii of Loligosepia can be distinguished from Jeletzkyteuthis by the transition lateral field/hyperbolar zone. |
||
|
|
|
A Geopeltidae Loligosepiidan (Vampyromorpha). Related to the modern Vampyroteuthis infernalis. Gladius with weakly arcuated hyperbolar zones. |
| |
|
|
|
A Geopeltidae Loligosepiidan (Vampyromorpha). Related to the modern Vampyroteuthis infernalis. It is distinguished from Geoteuthis and Loligosepia by its median rib: this rib forms a narrow ridge between two narrow grooves. |
||
Paraplesioteuthis[128] |
|
|
|
A Plesioteuthididae Prototeuthidinan (Vampyromorpha). was originally described as "Geoteuthis" sagittata. |
|
Clarkeiteuthis[129] |
|
|
|
A Diplobelidae Coleoidean. It has been found adult individuals of Clarkeiteuthis which caught small teleost fish of the species Leptolepis bronni. Further indirect evidence for the hunting behaviour comes from their body orientation in the water during life.[130] |
|
Odontobelus[131] |
|
|
|
A Diplobelidae Coleoidean. Has been confused with Acrocoelites tripartitus, hence the species name. |
|
Belotheutis[131] |
|
|
|
A Diplobelidae Coleoidean. Some specimens belong to Clarkeiteuthis (=Phragmoteuthis) conocauda, but others are clearly different. |
|
Sueviteuthis[132] |
|
|
|
A Sueviteuthididae Coleoidean. Sueviteuthis had at least six arms with rather simple hooks, similar to the present of the genus Phragmoteuthis. |
|
Lioteuthis[133] |
|
|
|
Type member of the Lioteuthididae Squid family. The taxonomic position of Lioteuthis is uncertain, although the wings reaching the proximal gladius section and the smooth median field suggest affinity to the Prototeuthididae[133] |
|
|
|
|
A Teudopseina Squid. |
| |
Geotheutis[135] |
|
|
|
A possible primigenial Cuttlefish. Is one of the most important fossils of Cephalopods on the Posidonia Shale, due to be one of the Earliest examples of Pigments found on any species, also one of the first historically.[136] The pigments are preserved on various specimens with Eumelanin related to its ink sacs and include even phosphatized musculature.[137] |
|
Cycloidea
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Partial Specimens. |
The First Cycloid Arthropod from the Jurassic, from the family Cycloidae inside Cycloidea.[138] Cycloids are a group of maxillopod arthropods that span between the Paleozoic until the latest Cretaceous, probably related to the crustaceans and probably detritivores.[138] |
||
Ostracoda
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Infracytheropteron[139] |
|
|
Cunchs |
A Marine Ostracodan of the family Protostomia. The specimens of this genus are rather fargmentary and of uncertain nature. |
|
|
|
Cunchs |
A marine Ostracodan, member of the family Healdiidae inside Podocopida. Rather abundant on the Toarcian profiles on Europe, this genus has a Mussel-like shape, with a very clean and round morphology. |
||
Hermiella[141] |
|
|
Cunchs |
A Marine Ostracodan of the family Healdiidae inside Podocopida. This genus is the main reported on the marine facies of the Dobbertin Clay Pit. |
|
Ogmoconchella[141] |
|
|
Cunchs |
A Marine Ostracodan of the family Healdiidae inside Podocopida. This genus is the main reported on the marine facies of the Dobbertin Clay Pit. |
|
Pseudohealdia[142] |
|
|
Cunchs |
A Marine Ostracodan of the family Healdiidae inside Podocopida. The genus is rare on the layers. |
|
|
|
Cunchs |
A Marine Ostracodan of the family Protocytheridae inside Podocopida. A genus related with Fish fossils and anoxic bottoms. |
||
|
|
Cunchs |
A Marine Ostracodan of the family Praeschuleridea inside Podocopida. |
||
Eucytherura[139] |
|
|
Cunchs |
A Marine Ostracodan of the family Cytheruridae inside Podocopida. Is rare and the specimens found are rather incomplete. |
|
Polycope[144] |
|
|
Cunchs |
A Marine Ostracodan of the family Polycopidae inside Cladocopina. Scarce but well preserved specimens. |
|
Cytherella[145] |
|
|
Cunchs |
A Marine Ostracodan of the family Cytherellidae inside Platycopida. |
|
Bairdia[139] |
|
|
Cunchs |
A Marine Ostracodan of the family Bairdiidae inside Bairdioidea. Abundant and diverse, is found associated with Ammonite shells. |
|
Bairdiacypris[139] |
|
|
Cunchs |
A Marine Ostracodan of the family Bairdiidae inside Bairdioidea. |
|
Malacostraca
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Single Specimen inside an Ammonite Shell. |
An hermit crab of the family Paguridae. |
||
Uncina[147][148] |
|
|
Nearly complete & Partial Specimens. |
An Astacidea Decapodan of the family Uncinidae. Reaching large sizes of almost half a meter (39–47 cm), Uncina Posidoniae is among the largest known Jurassic Crustaceans. Uncina posidoniae is also the largest representative of the genus Uncina.[148] This large crustacean has been found associated with Ammonite and Bivalve filled Bentos, where probably hunted different kinds of prey.[148] Its large claws would have been perfect to hunt small invertebrates and vertebrates.[148] |
|
Tonneleryon[149] |
|
|
Partial Specimens and complete Specimens |
A gregarious Polychelidan Lobster. Specimens of Tonneleryon schweigerti where recovered generally in cluster of several individuals, a characteristic unique to this species on the whole Polychelida group.[149] The specimens in these accumulations are of similar size, lacking characters of exuviae such as a split median line or disjunction of carapace and first pleonite. Due to that and the disposition of the specimens probably represent a mass-mortality assemblage and suggest this species was gregarious.[149] |
|
|
Partial Specimens. |
A Coleiidae Decapodan. The largest Coeloid from the formation, P. giganteus is a species reaching a larger size than most other polychelidans, with up to 15 cm. On the Posidonia Shale there is the most abundant variety of species from the genus, ranging from different sizes and morphologies, that indicate different habitat & feeding adaptations on the genus. Some like P. hartmani show less adaptations to hunt for small nectobenthic preys than other relatives, being abundant on Oyster-filled waters. There is a relatively abundance of the genus in deep-water settings from the Toarcian onward.[155] |
| ||
|
|
Partial Specimens. |
A Penaeidae Decapodan. |
| |
|
|
Partial Specimens. |
An Erymidae Decapodan. |
| |
|
|
Complete Specimens. Includes specimens inside ammonites shells |
An Erymidae Decapodan. |
||
|
|
Complete Specimens |
Type genus of the Erymidae Decapodan family. Originally, was named Glyphea amalthei,informally used by Quenstedt and housed on the Museum Naturkunde in Württemberg. A series of posterior revisions probe it was a different genus.[164] |
| |
|
|
Complete Specimens |
An Erymidae Decapodan. |
||
|
|
Single complete specimen in late larval stage |
The specimen reported represents the oldest fossil record of an achelatan lobster larva, and the first representative of achelatan lobsters in the Posidinia Shale. Shares similarities with the late Jurassic genus Cancrinos. |
| |
|
|
Single Incomplete Specimen |
A Stomatopoda Malacostracan. Its affinities haven't been tested. |
| |
Thoracica
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Toarcolepas[169] |
|
|
Numerous disarticulated individuals, associated with fossil wood.[169] |
A phosphatic-shelled Cirripede of the family Eolepadidae.[169] Toarcolepas is provisionally interpreted as the oldest epiplanktonic cirripede known, and is thought to have lived attached to floating driftwood.[169] |
|
Arachnida
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Single Incomplete Specimen. |
The type genus of the family Liassoscorpionididae, probably related to Mesophonoidea. Being the only Jurassic scorpion known, there is no evidence that L. schmidti was aquatic (which was suggested in the past) and in the absence of further, better preserved material it should be excluded from future considerations of broad patterns of scorpion evolution.[171] |
| |
Insecta
Insects are a common terrestrial animals that were probably washed into the sea due to monsoon conditions present on the Posidonia Shale.[172]
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Specimens |
A dragonfly of the family Heterophlebiidae. A relative abundant genus, present on most of the pits of the Posidonia Shale, even on Holzmaden. |
||
Plagiophlebia[174] |
|
|
Specimens |
A dragonfly of the family Heterophlebiidae. |
|
Heterothemis[175] |
|
|
Specimens |
A dragonfly of the family Liassogomphidae. Second most abundant genus of Odonatan in the Formation. |
|
|
|
Specimens |
A dragonfly of the family Liassogomphidae. |
||
Proinogomphus[174] |
|
|
Specimens |
A dragonfly of the family Liassogomphidae. |
|
|
|
Specimens |
A dragonfly of the family Sphenophlebiidae. The Kerkhofen specimen shows an almost complete dragonfly with head and abdomen as well the two pairs of wings that are partially on top of each other, consisting of fore and hind wings.[179] |
||
Ensphingophlebia[174] |
|
|
Specimens |
A dragonfly of the family Sphenophlebiidae. |
|
Mesoepiophlebia[177] |
|
|
Specimens |
A dragonfly of the family Sphenophlebiidae. |
|
Liassostenophlebia[174] |
|
|
Specimens |
A dragonfly. |
|
Syrrhoe[174] |
|
|
Specimens |
A dragonfly. |
|
Strongylogomphus[174] |
|
|
Specimens |
A dragonfly. |
|
|
|
Specimens |
A dragonfly of the family Myopophlebiidae. |
||
|
|
Specimens |
A dragonfly of the family Myopophlebiidae. |
||
Paraplagiophlebia[177] |
|
|
Specimens |
A dragonfly of the family Myopophlebiidae. |
|
|
|
Specimens |
A dragonfly of the family Liassogomphidae. |
||
|
|
Specimens |
A dragonfly of the family Campterophlebiidae.The largest Early Jurassic Insect Know, with a wings size up to 20 cm.[181] |
||
Gallodorsettia[182] |
|
|
Specimens |
A dragonfly of the family Campterophlebiidae. |
|
Henrotayia[183] |
|
|
Specimens |
A dragonfly of the family Henrotayiidae. |
|
Liadoblattina[184] |
|
|
Specimens |
A cockroach of the family Raphidiomimidae. |
|
Ptyctoblattina[174] |
|
|
Specimens |
A cockroach of the family Raphidiomimidae. |
|
Caloblattina[174] |
|
|
Specimens |
A cockroach of the family Caloblattinidae. |
|
Blattula[174] |
|
|
Specimens |
A cockroach of the family Blattulidae. |
|
|
|
Specimens |
A stick insect of the family Aerophasmidae. One of the described insects found more near the Bohemian Massif, where probably belong most of the terrestrial invertebrate fauna. |
||
Chresmodella[174] |
|
|
Specimens |
A stick insect of the family Aerophasmidae. |
|
Protogryllus[174] |
|
|
Specimens |
A grasshopper of the family Protogryllidae. |
|
Panorpidium[174] |
|
|
Specimens |
A grasshopper of the family Elcanidae. |
|
Acridiopsis[174] |
|
|
Specimens |
A short-horned grasshopper of the family Acrididae. |
|
Locustopsis[174] |
|
|
Specimens |
A grasshopper of the family Locustopsidae. |
|
Liadolocusta[174] |
|
|
Specimens |
A grasshopper of the family Locustopsidae. |
|
Archijassus[174] |
|
|
Specimens |
A Planthopper of the family Archijassidae. |
|
Elasmoscelidium[174] |
|
|
Specimens |
A Planthopper. |
|
Fulgoridium[174] |
|
|
Specimens |
A Planthopper of the family Fulgoridiidae. |
|
Fulgoridulum[174] |
|
|
Specimens |
A Planthopper of the family Fulgoridiidae. |
|
Procerofulgoridium[174] |
|
|
Specimens |
A Planthopper of the family Fulgoridiidae. |
|
Tetrafulgoria[174] |
|
|
Specimens |
A Planthopper of the family Fulgoridiidae. |
|
Metafulgoridium[174] |
|
|
Specimens |
A Planthopper of the family Fulgoridiidae. |
|
Productofulgoridium[174] |
|
|
Specimens |
A Planthopper of the family Fulgoridiidae. |
|
Margaroptilon[174] |
|
|
Specimens |
A Planthopper of the family Fulgoridiidae. |
|
Compactofulgoridium[174] |
|
|
Specimens |
A Planthopper of the family Fulgoridiidae. |
|
Procercopis[174] |
|
|
Specimens |
A Froghopper of the family Procercopidae. |
|
Megalocoris[174] |
|
|
Specimens |
A Shore bug Of Uncertain Placement. |
|
Eurynotis[174] |
|
|
Specimens |
A Shore bug of the family Archegocimicidae. |
|
Somatocoris[174] |
|
|
Specimens | ||
Corynecoris[174] |
|
|
Specimens | ||
Entomecoris[174] |
|
|
Specimens | ||
Ensphingocoris[174] |
|
|
Specimens | ||
Engynabis[174] |
|
|
Specimens | ||
Apicasia[174] |
|
|
|
Beetle of Uncertain Placement inside Coleoptera. Diverse Beetle specimens that due to it´s preservation (Incomplete) or it´s morphological Traits aren´t assganted to any concrete family. The Abundance of Beetle Elytrons indicetes the proximity of terrestruial habitats. |
|
Pholipheron[174] |
|
| |||
Grasselites[174] |
|
| |||
Omogongylus[174] |
|
| |||
Sideriosemion[174] |
|
| |||
Metanastes[174] |
|
| |||
Diatrypamene[174] |
|
| |||
Aptilotitus[174] |
|
| |||
Rhomaleus[174] |
|
| |||
Leptosolenophorus[174] |
|
| |||
Gastroratus[174] |
|
| |||
Brachylaimon[174] |
|
| |||
Pleuralocista[174] |
|
| |||
Mesoncus[174] |
|
| |||
Palaeotrachys[174] |
|
| |||
Hydroicetes[174] |
|
| |||
Scalopoides[174] |
|
| |||
Peridosoma[174] |
|
| |||
|
| ||||
Sphaerocantharis[174] |
|
| |||
Rhysopsalis[174] |
|
| |||
Diplocelides[174] |
|
| |||
Tripsalis[174] |
|
| |||
Trochiscites[174] |
|
| |||
Prosynactus[174] |
|
|
Specimens |
A False Ground Beetle of the family Trachypachidae. |
|
Coreoeicos[174] |
|
|
Specimens |
A False Ground Beetle of the family Trachypachidae. |
|
Aposphinctus[174] |
|
|
Specimens |
A Water Scavenger Beetle of the family Hydrophilidae. |
|
Zetemenos[174] |
|
|
Specimens |
A basal Beetle. |
|
Amphoxyne[174] |
|
|
Specimens |
A basal Beetle. |
|
|
|
Specimens |
A basal Beetle. |
||
Amblycephalonius[174] |
|
|
Specimens |
A basal Beetle of the family Coptoclavidae. |
|
Ooperioristus[174] |
|
|
Specimens |
A basal Beetle of the family Coptoclavidae. |
|
Camaricopterus[174] |
|
|
Specimens |
A basal Beetle of the family Schizophoridae. |
|
Megachorites[174] |
|
|
Specimens |
A Giant Beetle. It is among the largest found on all the Jurassic. |
|
Protobittacus[174] |
|
|
Specimens |
A Hangingfly of the family Bittacidae. |
|
Parabittacus[174] |
|
|
Specimens |
A Hangingfly of the family Bittacidae. |
|
Haplobittacus[174] |
|
|
Specimens |
A Hangingfly of the family Bittacidae. |
|
Mesobittacus[174] |
|
|
Specimens |
A Hangingfly of the family Bittacidae. |
|
Orthophlebia[174] |
|
|
Specimens |
A Scorpionfly of the family Orthophlebiidae. |
|
Parorthophlebia[174] |
|
|
Specimens |
A Scorpionfly of the family Orthophlebiidae. |
|
Mesopanorpa[174] |
|
|
Specimens |
A Scorpionfly of the family Orthophlebiidae. |
|
Pseudopolycentropus[174] |
|
|
Specimens |
A Scorpionfly of the family Pseudopolycentropodidae. |
|
Homoeoptychopteris[174] |
|
|
Specimens |
A Fly. |
|
Amianta[174] |
|
|
Specimens |
A Fly. |
|
Culiciscolex[174] |
|
|
Specimens |
A Fly. |
|
Liassonympha[174] |
|
|
Specimens |
A Fly. |
|
Bodephora[174] |
|
|
Specimens |
A Fly. |
|
Apistogrypotes[174] |
|
|
Specimens |
A Fly. |
|
Amphipromeca[174] |
|
|
Specimens |
A Fly. |
|
Cyrtomides[174] |
|
|
Specimens |
A Fly. |
|
Sphallonymphites[174] |
|
|
Specimens |
A Fly. |
|
Propexis[174] |
|
|
Specimens |
A Fly. |
|
Archipleciomima[188] |
|
|
Specimens |
A Fly. |
|
Protoplecia[174] |
|
|
Specimens |
A Fly of the family Protopleciidae. |
|
Mesorhyphus[188] |
|
|
Specimens |
A Wood Gnat of the family Anisopodidae. |
|
Metaraphidia[174] |
|
|
Specimens |
A Snakefly. |
|
Heterorhyphus[174] |
|
|
Specimens |
A Fly. |
|
Amblylexis[174] |
|
|
Specimens |
A Fly. |
|
Ellipibodus[174] |
|
|
Specimens |
A Fly. |
|
Homoeoptychopteris[174] |
|
|
Specimens |
A Fly. |
|
Protorhyphus[174] |
|
|
Specimens |
A Fly of the family Protorhyphidae. |
|
Praemacrochile[174] |
|
|
Specimens |
A primitive Crane fly of the family Tanyderidae. |
|
|
|
Specimens |
A primitive Crane fly of the family Tanyderidae. |
||
Architipula[174] |
|
|
Specimens |
A Crane fly of the family Limoniidae. |
|
Ozotipula[174] |
|
|
Specimens |
A Crane fly of the family Limoniidae. |
|
Haplotipula[174] |
|
|
Specimens |
A Crane fly of the family Limoniidae. |
|
Leptotipuloides[174] |
|
|
Specimens |
A Crane fly. |
|
Mikrotipula[174] |
|
|
Specimens |
A Crane fly. |
|
|
|
Specimens |
A Phantom Crane fly of the family Ptychopteridae. |
||
|
|
Specimens |
A Caddisfly. |
||
|
|
Specimens |
A Lacewing of the family Prohemerobiidae. |
||
Parhemerobius[174] |
|
|
Specimens |
A Lacewing of the family Prohemerobiidae. |
|
Paractinophlebia[174] |
|
|
Specimens |
A Lacewing of the family Prohemerobiidae. |
|
Panfilovia[174] |
|
|
Specimens |
A Lacewing of the family Panfiloviidae. A giant Lacewing, with forewing length more than 5 cm. |
|
|
|
Specimens |
A Giant Lacewing (Kalligrammatidae) of the subfamily Liassopsychopinae. It is one of the oldest known representatives of the Giant pollinator lacewings. The genus Liassopsychops was previously referred to Psychopsidae. Another specimen related, Ma 14504 is regarded here as Kalligrammatidae incertae sedis. This along the occurrence of two distantly-related genera of Kalligrammatidae in the lower Toarcian is unexpected.[192] |
||
Ophtalmogramma[192] |
|
|
Specimens |
A Giant Lacewing (Kalligrammatidae) of the subfamily Kallihemerobiidae. Other of the oldest known representatives of the giant pollinator lacewings. The Toarcian Kalligrammatidae lived in warm and dry conditions[192] |
|
Tetanoptilon[174] |
|
|
Specimens |
A lance Lacewing of the family Osmylidae. The largest non-Kalligrammatidae lacewing of the Jurassic, with a forewing length of 470 mm and a wingspan estimated at 11 cm. |
|
Protoaristenymphes[193] |
|
|
Specimens |
A lance Lacewing of the family Mesochrysopidae. |
|
|
|
Specimens |
A Hairy Cicada of the family Tettigarctidae. |
||
Liassotettigarcta[186] |
|
|
Specimens |
A Hairy Cicada of the family Tettigarctidae. |
|
Xulsigia[195] |
|
|
Specimens |
A Sternorrhynchan of the family Pincombeomorpha. It is curious for its peculiar venation on its wings. Has been proposed its own family, Xulsigiidae. |
|
Indutionomarus[196] |
|
|
Specimens |
A Coleorrhynchan of the family Progonocimicidae. |
|
Thilopterus[174] |
|
|
Specimens |
A Wasp of the family Ephialtitidae. |
|
Symphytopterus[174] |
|
|
Specimens |
A Wasp of the family Ephialtitidae. |
|
Liadobracona[174] |
|
|
Specimens |
A Wasp of the family Ephialtitidae. |
|
Pseudoxyelocerus[197] |
|
|
Specimens |
A Wood Wasp of the family Xyelotomidae. |
|
Agmatozoon[174] |
|
|
Specimens |
A non classified Insect. |
|
Campeulites[174] |
|
|
Specimens |
A non classified Insect. |
|
Tomeferusa[174] |
|
|
Specimens |
A non classified Insect. |
|
Trimerocephalium[174] |
|
|
Specimens |
A non classified Insect. |
|
Elasmoscolex[174] |
|
|
Specimens |
A non classified Insect. |
|
Epimetrophora[174] |
|
|
Specimens |
A non classified Insect. |
|
Oocephalina[174] |
|
|
Specimens |
A non classified Insect. |
|
Platycorion[174] |
|
|
Specimens |
A non classified Insect. |
|
|
|
Specimens |
A Dicondylian, from the family Protomyrmeleontidae. |
||
Dorniella[174] |
|
|
Specimens |
A basal Insect of the family Blattogryllidae. |
|
|
|
Specimens |
A basal Insect of the family Geinitziidae. |
||
Adelocoris[174] |
|
|
Specimens |
A basal Insect of the family Pachymeridiidae. |
|
Stiphroschema[174] |
|
|
Specimens |
A basal Insect of the family Pachymeridiidae. |
|
Asterozoa
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Specimens |
An Ophiuridan of the family Ophiactidae. Very rare on the layers. |
| |
|
|
Specimens |
An Ophiuridan of the family Ophiolepididae. Very rare on the layers, being Mesophiomusium geisingense the most common of the two species present. |
| |
Ophiarachna[201] |
|
|
Specimens |
An Ophiuridan of the family Ophiacanthida. Very Common, related to non anoxic water sedimentation. |
|
|
|
Specimens |
An Ophiuridan of the family Aplocomidae. Very Common. |
| |
?Ophiura[201] |
|
|
Specimens |
An Ophiuridan of the family Ophiuridae. Its relationships haven't been confirmed and it is based on very fragmentary remains. |
|
?Ophiocten[201] |
|
|
Specimens |
An Ophiuridan of the family Ophiuridae. Its relationships haven't been confirmed and it is based on very fragmentary remains. |
|
|
|
Specimens |
An Asteroidean of the family Astropectinidae. It is very rare on the layers, and a few fragmentary specimens are known. Only a relatively complete specimen is known from Banz Abbey. |
| |
Echinoidea
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Specimens |
A sea urchin of the family Cidaridae. Common on several layers. Cidaris is genus that still alive today. A bottom dweller, is commonly found associated with Belemnnite fossils, probably due to eating its carcasses. |
| |
|
|
Specimens |
A sea urchin of the family Pedinidae. It is the most common sea urchin in the formation, present on all the levels with specimens of various sizes. Vinculated to sea bottom sediments, before Gasteropods and Bivalves, Diademospsis was the third major colonizer of the bottom, in between anoxic changes. |
| |
Hemipedina[206] |
|
|
Specimens |
A sea urchin of the family Pedinidae |
|
|
|
Specimens |
A sea urchin of the family Diadematidae |
| |
Pseudodiadema[206] |
|
|
Specimens |
A sea urchin of the family Pseudodiadematidae |
|
Procidaris[6] |
|
|
Specimens |
A sea urchin of the family Miocidaridae |
|
Holothuroidea
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Specimens |
A sea cucumber of the family Chiridotidae. It is the only major genus of Sea Cucumbers reported locally on the Posidonienschiefer. It was identified originally as Chirodonta mesoliasicus and Chirodonta heptalmorpha. Represents a possible cosmopolitan holothurian that occupied all three types of deep-sea ecosystems as an organic-enrichment opportunist. |
||
Crinoidea
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Praetetracrinus[209] |
|
|
Isolated Stems |
A Crinoidean of the family Plicatocrinidae. |
|
Shroshaecrinus[209] |
|
|
Isolated Stems |
A Crinoidean of the family Millericrinidae. |
|
Procomaster[201] |
|
|
Isolated Stems |
A Crinoidean of the family Isocrinida. |
|
Isocrinus[210] |
|
|
Isolated Stems |
Type genus of Crinoidean of the family Isocrinida. |
|
Seirocrinus[48] |
|
|
|
The largest known Crinoidean, from the family Pentacrinitidae. Among the tallest animals of its period, Seirocrinus is also one of the most famous fossils from the Posidonia Shale. It consists of fossils of colonies along large wood trunks, with specimens up to 14 m long, with the largest specimen reaching 26 m long,[211] what makes it among the tallest know Mesozoic organisms, one of the largest invertebrates know on the fossil record and one of the tallest know animals. It was an open ocean organism that lived in rafting woods, probably filtering food and serving as a refuge for other animals, such as ammonites.[212] The crinoids had a large colonization process, based on the status of the fossil wood found.[213][214] The large rafts were the home for a high variety of marine organisms, such as Balanoideans, Ammonites and other. It has been estimated that without the presence of modern raft wood predators (that appeared on the Bathonian) those rafts can last up to 5 years, being that the main reason the crinoids were able to reach such huge sizes. The large rafts were also probably essential to distribute animals along the Early Jurassic Seas.[215] |
|
|
|
|
Type genus of Crinoidean from the family Pentacrinitidae. Like Seirocrinus, Pentacrinites formed colonies on rafting wood, getting a different role than bigger crinoid and appearing on the first stages of the decomposition of the rafting wood. Was a smaller genus, with specimens of no more than 1 meter long, usually measuring 40–70 cm. |
| |
Vertebrata
Chondrichthyes
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Microtoxodus[218] |
|
|
Teeth |
A non classified Elasmobranch. |
|
|
|
Teeth |
Thype shark of the family Synechodontiformes. |
||
|
|
Teeth |
A shark of the family Synechodontiformes. |
||
|
|
Teeth |
A member of the family Protospinacidae. |
||
Palidiplospinax[220] |
|
|
Articulated vertebral column, girdles, both fin spines and clasper organ |
A member of the family Palaeospinacidae. |
|
|
|
Anterior part of body with basicranium, palatoquadrates, Meckel's cartilage, ceratohyals, epihyals, teeth, traces of the branchial arches and the anterior finspine |
Type member of the family Palaeospinacidae. |
||
Mesiteia[218] |
|
|
Teeth |
A Carpet shark of the family Orectolobiformes. |
|
|
|
Teeth |
A Carpet shark of the family Hemiscylliidae. |
| |
Palaeobrachaelurus[218][114] |
|
|
Teeth |
A Carpet shark of the family Orectolobiformes. |
|
Ornatoscyllium[114] |
|
|
Teeth |
A Carpet shark of the family Orectolobiformes. |
|
|
|
Teeth |
A Carpet shark of the family Orectolobiformes. |
||
Paracestracion[114] |
|
|
Teeth |
A bullhead shark of the family Heterodontidae. |
|
|
|
Teeth. |
A bullhead shark of the family Heterodontidae. |
||
|
|
Teeth |
A shark of the family Agaleidae. |
||
|
|
Teeth |
A shark of the family Acrodontidae. |
||
|
|
Teeth |
A shark of the family Hybodontiformes. |
||
Crassodus[223] |
|
|
Meckelian Cartilages, Jaws, teeth, Palatoquadrates, placoid scales and dearticualted parts of the labial, hyoid and branchial skeleton. |
A shark of the family Hybodontidae. The Type specimen belongs to a large hybodontid, with an estimated total length of up to 3 m.[223] It has a Meckelian Cartilage more robust than Hybodus hauffianus and an acrodontine dentition, as seen on Bdellodus.[223] Probably is related with "Hybodus" delabechei, very likely a junior synonym of Crassodus.[223] |
|
|
|
Teeth. |
A shark of the family Hybodontidae. |
| |
|
|
|
Type shark of the family Hybodontidae. It is the most abundant shark on the layers of the Posidonia Shale, with some of the best preserved specimens of the genus known. It was probably an open ocean hunter, with small horns over the eyes. With a size around 2 m, it was also one of the largest representatives of the Chondrichthyes on the formation.[227][228] |
| |
|
|
|
Type shark of the family Acrodontidae. |
||
Pseudonotidanus[229] |
|
|
|
A shark of the family Hexanchiformes. |
|
|
|
Partially Complete Specimen, with associated teeth |
A member of Callorhynchidae inside Chimaeriformes. Similar to Callorhinchus, among the oldest known of its type. |
| |
|
|
Head and postcranial remains |
A member of Myriacanthidae inside Chimaeriformes. An aberrant Chimaera with an extrange elongated nose and horns over the skull. |
| |
|
|
|
A member of Myriacanthidae inside Chimaeriformes. An aberrant Chimaera with a second jaw-like structure on its head. |
||
Recurvacanthus[234] |
|
|
Fin Spine |
A member of Myriacanthidae inside Chimaeriformes. |
|
|
|
Teeth |
A Basal member of the Rajiformes of the family Archaeobatidae. |
||
|
|
Teeth |
A Basal member of the Rajiformes of the family Archaeobatidae. |
||
Doliobatis[235] |
|
|
Teeth |
A Basal member of the Rajiformes of the family Archaeobatidae. |
|
|
|
Teeth |
A Basal member of the Rajiformes. |
||
Actinopteri
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Holzmadenfuro[236] |
|
|
Complete Specimen |
First ganoin-scaled Ophiopsiformes (Halecomorphi) from the Posidonienschiefer. The type specimen measures 51 cm, and has elongated and serrated body scales before the dorsal fin and tiny ganoid scales after it.[236] |
|
Ohmdenfuro[236] |
|
|
Nearly complete specimen with broken skull |
First ganoin-scaled Ophiopsiformes (Halecomorphi) from the Posidonienschiefer. Elongated morphology, with a length of ~39 cm, covered by smooth, massive ganoin scales.[236] |
|
|
|
Various Complete and nearly complete Specimens |
Type Genus of the family Caturidae inside Amiiformes |
| |
Lycodus[206] |
|
|
|
A possible representative of the family Saurichthyidae. Is based on rather fragmentary specimens. |
|
|
|
|
The youngest representative of the family Saurichthyidae, known for its large jaws, similar to modern Belonidae. |
| |
|
|
|
Type member of the family Ptycholepididae inside Ptycholepiformes. It is one of the Youngest representatives of its Family. |
| |
|
|
|
A member of the family Pholidophoridae. Is among the most abundant fishes on the late liassic of Europe, present on the sub-Mediterranean boreal, with specimens of several sizes. |
| |
Luxembourgichthys[241] |
|
|
Fragmentary Specimens |
A member of the family Pholidophoridae. |
|
|
|
|
A member of the family Leptolepididae. The most common member of its family, Leptolepis is commonly associated with Crustaceans and small marine invertebrates, probably main creatures on its diet. One on the most predated vertebrates on the formation, with abundance of larger fishes and reptiles with specimens associated. |
| |
|
|
MB. f.7612, nearly complete specimen. |
A member of the family Leptolepididae. Was identified as Paraleptolepis, but this name is currently occupied by a Japanese fish genus of Early Cretaceous age.[244] It differs from Leptolepis coryphaenoides in the presence of a few autapomorphics and also in the retention of several primitive features not present on the last one.[243] Small genus, of about 14 cm length.[243] |
||
|
|
|
A member of the family Pachycormidae. |
| |
|
|
|
A member of the family Pachycormidae. Large representative of the family, reaching sizes up to 2.3 m. |
| |
|
|
|
Type member of the family Pachycormidae. Large representative of its family, with a size up to 1.5 m. One specimen preserved the alimentary canal, with the stomach filled by numerous hooklets that can be referred to the coleoid cephalopod Phragmoteuthis, implying a diet of cephalopods from this genus.[249] |
| |
|
|
|
A large member of the family Pachycormidae. |
| |
Ohmdenia[252] |
|
|
Single desarticulated Specimen |
A large member of the family Pachycormidae, with up to 2.5–3 m long and an estimated weight over 200 kg.[252][253] Considered originally a junior synonym of Pachycormus, although the craneal bones suggest a new genus. Among the largest fish found on the formation it is a key fossil on the transition to large filter feeding fishes.[253] Being Coeval with another basal Pachycormiformes show the specialization of the group during the late lower jurassic.[253] Ohmdenia is the sister taxa to group of suspension-feeding Giant Middle-Late Jurassic Fishes (Including the famous Leedsichthys), showing alterations on its dental structure, with jaw indicates a diet based on soft body prey.[253] Its evolutionary significance is comparable to that of the genus Aetiocetus for the modern Baleen whale.[253] |
|
|
|
A deep-bodied neopterygian, Type member of the family Dapediidae. Unpublished material indicates the presence of one or even two more still undescribed species of Dapedium in the Lower Toarcian.[255] |
| ||
|
|
|
A common member of the Lepisosteiformes. |
| |
|
|
|
A common member of the Semionotidae. |
| |
Strongylosteus[259][260] |
|
|
|
A large member of the Chondrosteidae and the largest non reptilian marine vertebrate of the Posidonia shale, with a size between 3 and 4.5 m, and an estimated weight over 800 kg to 1 tonne.[259] Has been suggested as a junior Synonym of Chrondrosteus, although there haven't been any new revision about the status of the genus. It is related to modern sturgeons, but with a different kind of mouth than common species, made for hunting prey in open waters, with a strong lower jaw, similar to modern Beluga Sturgeons.[261] |
|
Sarcopterygii
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
|
A large coelacanth of the family Mawsoniidae, related with the genera Axelrodichthys, Chinlea, Diplurus and the type Mawsonia.[263] The largest specimen know from the Posidonia Shale is GPIT.OS.770 (Holotype), with a length over 1.6 m.[262] The specimen presents an ossified lung inside the abdominal cavity, and most of the body, being also one of the most complete Coelacanths of the Jurassic found.[262][263] Some recent discoveries from the Middle Jurassic show specimens of up to 3.5 m long.[264] Trachymetopon precedes the presence of the family Mawsoniidae in Europe by about 120 Ma and the northernmost occurrence of a member of the group, implying an extensive geographical range during the Early Jurassic.[263] Due to the specimens being found on pelagic deposits suggest that probably was an open ocean swimmer.[262][263] |
| |
Ichthyosauria
Inderminate specimens are known.[6]
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
|
Type genus of the family Temnodontosauridae. A large Macroraptorial Ichthyosaur, apex predator of its environment. It ranges between 9 and the 12 m, being one of the largest known ichthyosaurs, characterized by skulls and jaws over 1 m in length, with the largest being over 1.9 m long. It has been found with fragments of young icthyosaur on his stomach.[267] Of 39 specimens of Temnodontosaurus studied, a 21% (8 Specimens) show pathologies along their body, with several injuries post traumatic, probably done by other marine reptiles.[268] |
| |
|
|
Type genus of the family Stenopterygiidae. A common Toarcian Ichthyosaur, present on multiple layers. The rather exquisite level of preservation has led to know even the coloration, that exposes a clear countershading, with an upper part being more obscure than the lower, similar to modern Killer Whales, the Heaviside's dolphin or the Dall's porpoise. There is also evidence of changes in color with ontogenic changes, going from dark juveniles to countershaded adults. The skin was flexible & Scaless, as in Dolphins.[273] The study of several specimens has revelated that the Stenopterygius quadriscissus underwent a size-related trophic niche shift through ontogeny, shifting from a piscivorous diet to a teuthophagous diet, know thanks to exquisite preserved stomach contents.[274] Stenopterygius was a relatively opportunistic feeder, as gut contents tend to track relative species abundance.[274] |
| ||
|
|
|
Type genus of the family Suevoleviathanidae. Includes specimens up to 4 m long. |
| |
|
|
Complete Specimens |
Small sized Ichthyosaur, probably a member of Parvipelvia, sister group to Stenopterygius + Ophthalmosauridae.[280] A small- to mid-sized ichthyosaur, 2–3 m in length, with relatively short and slender antorbital rostrum.[279] |
| |
|
|
|
A large ichthyosaur of the family Leptonectidae with convergent evolution with modern Swordfish. Like this fishes, Eurhinosaurus is believed to be a fast swimming predator, able to hunt fish schools on same way. Large specimens of up to 6 m are known. |
| |
Plesiosauria
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
|
An indeterminate Plesiosauroidea Plesiosaur. A impressively preserved Inmature specimen, different from Hydrorion brachypterygius and Seeleyosaurus guilelmiimperatoris, the most abundant Plesiosaurs found locally, and it´s anatomical characters suggest it represents a new genus.[284] It fossilized buff-coloured material, identified as mainly composed of calcium phosphate and interpreted as phosphatised muscle tissues.[284] It also contains eumelanin and hence possibly corresponds to areas dark-coloured in life.[284] The stomach contains quartz grains that were most likely ingested during the animal’s life, maybe used for food trituration. This gastroliths have importance for it´s exotic provenance compared with the sorrounding lithology of the deposits (Mostly Shale), and as sandy turbidites have never been reported from the SW German Basin, the individual may have acquired the sand-sized grains many kilometres away from the burial site.[284] Strata containing fine sand (‘Glaukonit und viel Feinsand’) at Obereggenen im Breisgau (western side of the Black Forest between Freiburg and Basel), 200 km from Holzmaden suggest a nearshore deposit was allocated here, and that the Black Forest Emerged at this time. Probably this young specimen reached that location in serach for Gastroliths.[284] |
||
|
|
Complete Specimen. |
A basal Plesiosaur that has been linked with Cryptoclididae. It is one of the smallest from the Posidonia, with a complete skeleton measuring less than 2.5 m. It is considered a possible junior synonym of Seeleyosaurus[287] |
| |
|
|
|
A Plesiosaur of the family Microcleididae. It was named originally "Plesiosaurus guilelmiimperatoris". It was a moderate‐sized plesiosauroid, measuring up to 3,5 m in length with a skull length of 170 mm.[289] |
| |
|
|
Several Complete Specimens. |
Type member of the Plesiosaur family Microcleididae. Small Plesiosaur, with a length of less than 3 m. Possible Junior synonym of Hydrorion |
| |
|
|
|
A Plesiosaur of the family Plesiosauridae. It is characterised by a really enlongated neck, was probably an ichthyophagous form that occurred rarely in the Posidonienschiefer fauna. |
| |
|
|
Nearly complete specimen. |
A Rhomaleosauridae Plesiosaur. Its detailed fossils have helped to study plesiosaur movement.[294] |
| |
|
|
Complete specimen. |
A Rhomaleosauridae Plesiosaur. A moderately sized (3.4 m) Rhomaleaosaurid, ecologically adapted to fish hunt, as has been observed due to comparing the long snouted skull with that of Peloneustes, Gharial Crocodiles or Dolphins.[295] |
| |
Sphenodontia
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
|
An aquatic sphenodont of the family Pleurosauridae. Palaeopleurosaurus evidences that there was a slightly skeletal specialization for an aquatic lifestyle, achieved through the Jurassic gradually on pleurosaurs.[296] It has similarities with other marine reptiles, such with members of Sauropterygia the presence of a defined suture between the centrum and the neural arch, along with reduced sternum.[297] Probably had a semiaquatic style of life, although not as adapted as Pleurosaurus, as show limited morphological evidence of adaptation to a complete aquatic lifestyle, defined by no Osteosclerosis and the lack of Pachyostosis, except for a thicker shaft region in the humerus, that is as narrow as in terrestrial rhynchocephalians, such as the terrestrial Clevosaurus.[297] Palaeopleurosaurus probably was still able to walk on land, for example for Oviposition.[297] Recent studies suggest a shorter lifespan than modern Tuatara, based on irregular spacing of growth marks.[298] |
| |
Testudinata
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
|
A Marine Turtle of the family Pleurosternoidea inside Amphichelydia. Is the Only Formally Identified fossil as Turtle from the Posidonia Shale, representing a rather basal genus. The Pleurals resemble those of the genus Plesiochelys.[299] Being Found on the zone of Franconia that on the Toarcian was at -80 Km from the shore can suggest that early Marine Turtles lived on the epicontinental waters of the European shallow seas before reach richer ecosystem diversity on the Late Jurassic.[299] This would explain the serious lack of Turtle fossils on the formation, as mostly of the deposits are located far from the coast.[299] |
||
|
|
|
Unclassified Testudine remains. Münster (1834) cited: "there were also rare things at the quarries of Altdorf, among other remains there were ones of a turtle on lias limestone"". The remains are not catalogued and some specimens are in Private Collections.[305] |
||
Crocodylomorpha
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Complete specimens. |
A marine crocodrylomorph with a diet probably based on fish.[307] It is the best known member of the family Teleosauriade. The Genus was declared Invalid in 2020. |
||
|
|
|
A Thalattosuchian of the family Machimosauridae. Was considered synonymous with Steneosaurus until in 2020 this last was recovered as invalid.[310] Includes 5 m specimens. |
| |
|
|
|
A Thalattosuchian of the family Teleosauridae. A marine crocodrylomorph with a diet probably based on fish. Was considered synonymous with Steneosaurus until recently.[313] Due to this unusual placement of the external nares, Mystriosaurus was more terrestrial, or spent a greater amount of time on land, than other teleosauroids. |
| |
|
|
|
A Thalattosuchian of the family Teleosauridae. Platysuchus was slightly more robust than its contemporaneous relatives, being probably adapted to hunt more voluminous fish. |
| |
|
|
|
A Thalattosuchian with a complex assignation, where can be a member of the family Teleosauridae or the basalmost Metriorhynchoidean. With a less heavy built, bigger skull and more visible marine adaptation, its diet probably based completely on fish (one fossil specimen was found with a Leptolepis in its stomach contents). Has been considered a basal Metriorhynchidae[317] or sister taxon to both Teleosauridae and Metriorhynchidae.[318] |
| |
|
|
Frontal Snout |
A Possible Goniopholid Neosuchian. Classified as "?Steneosaurus" sp., it was noted initially a morphology more similar to Goniopholis simus and specially Amphicotylus lucasii, being a possible early member of the group.[112] |
||
|
|
Fragmentary remains |
Possible member of the Protosuchia inside Crocodyliformes. If is confirmed as a member of the family it would be a terrestrial, maybe semi-acuatic crocodrylomorph. Can be a mistaken juvenile Teleosaurian.[304] |
||
Pterosauria
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
A Novialoidean Pterosaur, type genus of the family Campylognathoidea. Mark Witton suggests the construction of Campylognathoides' extremely robust forelimbs, with proportionally long wing fingers, could be a specialization for a fast aerial lifestyle comparable to those of Falcons and mastiff bats, being more probably an insect & vertebrate hunter and living on nearshore environments.[322] |
| ||
|
|
Pelvis and several vertebrae. |
A Novialoidean Pterosaur, probably a member of the family Campylognathoidea. Has been assigned to the genus Campylognathoides, although it is clearly different than any other pterosaur from the Posidonia Shale.[323] The name "Schandelopterus" is invalid and lacks any study, assigned without species to refer to the specimen on private German Fossil Groups. The pelvis indicates a laterally, slightly upwardly directed orientation of the acetabula which does not support a bird-like bipedal locomotion of this pterosaur as has been suggested on the past.[323] |
||
|
|
Skull |
A Rhamphorhynchinae Pterosaur. Has been assigned to the genus Dorygnathus. It has a really complete skull that can help to explain the status of the genus Parapsicephalus.[324] |
||
|
|
A Rhamphorhynchinae Pterosaur. It is one of the best known Early Jurassic Pterosaurs.[325] Unlike Campylognthoides, Dorygnathus was an oceanic hunter, with teeth disposed to catch marine prey, such as Belemnittes and several species of fishes. Dorygnathus mistelgauensis is considered a junior synonym until more data can be recovered from the specimen, held on a private collection.[325] |
| ||
|
|
Femur and a broken tibia-fibula. |
A possible Rhamphorhynchinae Pterosaur. Like "Schandelopterus", "Ohmdenodraco" is an invalid name, used on private fossil groups to refer to SMNS 80439, assigned as "?Dorygnathus sp." originally, although characters on the tibia and femur are distinct to any Pterosaur found on the Posidonia.[325] |
||
Dinosauria
Possible teeth from Dinosaurs are known from the Lias Clay pit of Unterstürmig (Referred as "Various Archosaur teeth").[6]
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
|
An indeterminate possible Theropod dinosaur, possibly Neotheropoda. Hasn't been revised since 1984. The Cervical Vertebrae was found on Schandelah and was described as having a similar appearance and size to those found on the Triassic genus Pterospondylus (What would make it a late Coelophysidae member, with a length of 1.8 m).[331] But can be alternatively from a Plesiosaur.[331] A series of teeth found on Altdoft can include theropod teeths, probably from smaller specimens (speculated less than 60 cm animals).[6] |
||
Sauropodiformes[332] |
|
|
3 cm long, tooth-studded fragment of a lower jaw |
An indeterminate possible Sauropodomorph dinosaur, possibly a member of Sauropodiformes inside Anchisauria (Resemble Yunnanosaurus teeth).[332] The Fossil was reported from the Lias Epsilon level, that on Oedhof is occupied by the Posidonia Shale.[332] It was found with abundant Plant debris and Belemnite remains.[332] Hasn't been revised since 1956 |
|
|
|
Tibia and astragalus |
A Gravisaurian Sauropod. One of the few formally described from the Toarcian. Has been related with Vulcanodon, although more recent studies placed it as a relative of Rhoetosaurus.[334] It has been claimed to be a small sauropod with a size of 4 m, although the tibia measures 405 to 410 mm, leading to a 6.7 m long sauropod. Molina Pérez & Larramendi, estimated a modern size of 6.2 to 6.7 m long, with a weight of 1.3 tonnes.[335] |
| |
Synapsida
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
|
Possible Cynodont Remains, Incertade sedis inside Cynodontia. The specimens were listed on several notes on the 1800s (As "mammal teeth"), although its existence has not been proved. Can be related to the Trithelodontidae or other late surviving Cynodonts by related characters, such as Irajatherium, but also to the Mammaliformes. If its presence is proved, it would be the first Synapsid found on the Posidonia Shale. |
| |
References
- Hess, H. (1999). Lower Jurassic Posidonia Shale of Southern Germany. Fossil crinoids, 183-196.
- Martill, D. M. (1993). Soupy substrates: a medium for the exceptional preservation of ichthyosaurs of the Posidonia Shale (Lower Jurassic) of Germany. Kaupia, 2, 77-97.
- Schmid–Röhl, A., & Röhl, H. J. (2003). Overgrowth on ammonite conchs: environmental implications for the Lower Toarcian Posidonia Shale. Palaeontology, 46(2), 339-352.
- Böhm, F., & Brachert, T. C. (1993). Deep-water stromatolites and Frutexites Maslov from the early and Middle Jurassic of S-Germany and Austria. Facies, 28(1), 145–168. doi:10.1007/bf02539734
- Riegraf, W., 1985: Mikrofauna, Biostratigraphie und Fazies im Unteren Toarcium Sued-westdeutschlands und Vergleiche mit benachbarten Gebieten in Tuebinger Mikropalaeontologische Mitteilungen
- W. Riegraf. 1985. Biostratigraphie, Fauna und Mikropaläontologie des Untertoarcium-Profiles von Unterstürmig (Oberfranken, Süddeutschland). Geologische Blätter für Nordost-Bayern 34/35:241–272
- FEIST-BURKHARDT, S., & WILLE, W. Jurassic palynology in southwest Germany–state of the art CAHIERS DE MICROPALÉONTOLOGIE 8th International Palynological Congress, NS 1992-Volume 7-N" 1/2 Aix-en-Provence, 13-16th Sept. 1992–Excursion F. Éditions du CNRS.
- Prauss, M., Ligouis, B., & Luterbacher, H. (1991). Organic matter and palynomorphs in the ‘Posidonienschiefer’(Toarcian, Lower Jurassic) of southern Germany. Geological Society, London, Special Publications, 58(1), 335-351.
- Prauss, M. (1996). The Lower Toarcian Posidonia Shale of Grimmen, Northeast Germany. Implications from the palynological analysis of a near-shore section. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 107-132.
- Wille,W. et al. (1979) Dinoflagellates from the Lias of Sw Germany. [ Dinoflagellaten aus dem Lias Sмdwestdeutschlands. ] Neues Jahrbuch fмr Geologie und Paleontologie. Abhandlungen Vol. 158 # 2 P. 221- 258
- Wille,W. (1982) Evolution and ecology of Upper Liassic dinoflagellates from southwest Germany. Neues Jahrbuch fмr Geologie und Paleontologie. Abhandlungen Vol. 164 # 1 P. 74- 82
- Lund,J.J. (1996) Jurassic and Cretaceous microfloras used to determine the stratigraphical succession of steeply dipping strata along the Prahl Fault, Dobenwohr Hafgraben, northeast Bavaria. Neues Jahrbuch fмr Geologie und Pal¤ontologie. Abhandlungen Vol. 200 # 1 P. 133- 147
- Gotch, H. (1964). Planktonische Kleinformen aus dem Lias-Dogger Grenzbereich Nord- und Süddeutschlands. Neues Jahrb. Geol. Paläontol. Abh. 119: 113-133.
- Feist‐Burkhardt, S. (1995). Weiachia fenestrata gen. et sp. nov., a new Phallocystean dinoflagellate cyst from the Lower Jurassic of Switzerland. Palynology, 19(1), 211-219.
- Gorbanenko, O. O., & Ligouis, B. (2014). Changes in optical properties of liptinite macerals from early mature to post mature stage in Posidonia Shale (Lower Toarcian, NW Germany). International journal of coal geology, 133, 47-59.
- Schouten, S., van Kaam-Peters, H. M., Rijpstra, W. I. C., Schoell, M., & Damste, J. S. S. (2000). Effects of an oceanic anoxic event on the stable carbon isotopic composition of early Toarcian carbon. American Journal of Science, 300(1), 1–22.
- Madler,K.A. (1963) Organic microstructures of the Posidonia Shale. [ III. Die figurierten organischen Bestandteile der Posidonoenschiefer. ] Beihefte zum Geologischen Jahrbuch Vol. 58 P. 287- 406
- Visentin S, Erba E, Mutterlose J. 2019. Biostratigraphic constraints of the Early Toarcian Oceanic Anoxic Event: new data from calcareous nannofossil investigations of Boreal and Tethyan sections. PeerJ Preprints 7:e27999v1 https://doi.org/10.7287/peerj.preprints.27999v1
- Madler,K.A. (1969) Tasmanites and related planktonic organisms from the Posidonian Shales. [ Tasmanites und verwandte planktonformen aus dem Posidonienschiefer-Meer. ] International Conference on Planktonic Microfossils, 1st, Geneva, 1967, Proceedings. E. J. Brill, Leiden. P. 375- 377
- Wetzel,O. (1958) New microfossils from the Lias, especially from the Posidonian Shale. [ Neue mikrofossilien aus dem Lias, insbesondere aus dem Posidonienschiefer. ] Palaeontologische Zeitschrift Vol. 32 # 1 P. 15- 15
- Wilde, V. (2001). Die Landpflanzen-Taphozönose aus dem Posidonienschiefer des Unteren Jura (Schwarzer Jura [Epsilon], Unter-Toarcium) in Deutschland und ihre Deutung. Staatliches Museum für Naturkunde.
- Vogellehner, D. (1982). Zur Anatomie und Systematik von «Treibhölzern» aus dem Posidonienschiefer von Holzmaden (Schwäb. Alb).
- SEILACHER, A. (1990): Die Holzmadener Posidonienschiefer. Entstehung der Fossillagerstätte und eines Erdölmuttergesteines. – In: WEIDERT, W.K. (Hrsg.): Klassische Fundstellen der Paläontologie, 2: 107–131; Korb (Goldschneck)
- AMMON VON L. 1875. Die Jura Ablagerungen zwischen Regensburg und Passau. Theodor Ackermann, München
- BRACH ERT Th. 1987. MakrofossilfUhrung der "Siemensi-Geoden" (Mittlerer Lias Epsilon, Unteres Toarcium) von KerkhofeniOberpfalz ( Bayern) : Neue Insekten- und Pflanzenfunde. Geologische Blätter NO-Bayern, 37(3-4) : 217–240.
- Schulz,E. et al. (1966) Table of distribution of spores and pollen in the German Lias and Dogger. comments on the table of stratigraphic distribution of spores and pollen in the Liassic and Dogger [ Tabelle der verteilung der sporen und pollen im Deutschen Lias und Dogger ] Abhandlungen des Zentralen Geologischen Instituts # 8 P. 1- 200
- Thiergart,F. (1944) The plant remains of the Posidonia Shale. [ Die Pflanzenreste des Posidonienschiefers. ] Archiv fur Lagerstattenforschung, zur Palaogeographie und Bitumen-Fuhrung des Posidonihiefers Im Deutschen Lias Vol. 77 P. 45- 48
- Madler,K.A. (1956) Pollen analytical studies on the Posidonian Shale. [ Pollenanalytische untersuchungen im Posidonienschiefer ] Pal¤eontologische Zeitschrift Vol. 30 # 1 P. 18- 18
- Van Konijnenburg-van Cittert, J. H. (1992). An enigmatic Liassic microsporophyll, yielding Ephedripites pollen. Review of palaeobotany and palynology, 71(1-4), 239-254.
- Tekleva, M. V., Krassilov, V. A., Kvacek, J., & Van Konijnenburg-van Cittert, J. H. A. (2006). Pollen genus Eucommiidites: ultrastructure and affinities. ACTA PALAEOBOTANICA-KRAKOW-, 46(2), 137.
- Crane, P. R. (1996). The fossil history of the Gnetales. International Journal of Plant Sciences, 157(S6), S50-S57.
- Rydin, C., Pedersen, K. R., Crane, P. R., & Friis, E. M. (2006). Former diversity of Ephedra (Gnetales): evidence from early Cretaceous seeds from Portugal and North America. Annals of Botany, 98(1), 123-140.
- Wade-Murphy, J., Kuerschner, W. M., (2006). A new technique to infer the botanical affinity of palynomorphs, and its application on spheripollenites psilatus from the toarcian of bornholm, denmark. In 7 th European Palaeobotany Palynology Conference, Prague (p. 153).
- G. Suan, B.L. Nikitenko, M.A. Rogov, F. Baudin, J.E. Spangenberg, V.G. Knyazev, L.A. Glinskikh, A.A. Goryacheva, T. Adatte, J.B. Riding, K.B. Föllmi, B. Pittet, E. Mattioli, C. Lécuyer Polar record of Early Jurassic massive carbon injection Earth and Planetary Science Letters, 312 (2011), pp. 102-113
- SALFELD, H. (1907): Fossile Land-Pflanzen der Rät- und Juraformation Südwestdeutschlands. – Palaeontographica, 54/4: 163–204, Taf. 14–22; Stuttgart. – (1909): Beiträge zur Kenntnis jurassischer Pflanzenreste aus Norddeutschland. – Palaeontographica, 56/1: 1–35, 2 Abb., Taf. 1–6. Stuttgart.
- MAUBEUGE, P. (1947). Sur l'existence du genre Neocalamites dans le Toarcien du Grand-Duché de Luxembourg. Archives de l'Institut Gratul-Ducal de Luxembourg, Section des Sciences naturelles, physiques et mathématiques, nouvelle série, 17, 59-64.
- Manfred Jäger (2005).Das Fossilienmuseum im Werkforum. Führer durch die Ausstellung von Jura-Fosslilien. 3.Aufl. Dotternhausen.
- Böttcher, R. (1998): Leben und Tod im Meer des Posidonienschiefers. - In: E. P. J. Heizmann (Hrsg.): Erdgeschichte Mitteleuropäischer Regionen (2). Vom Schwarzwald zum Ries, S. 83-96, 25 Abb.; München (Pfeil).
- KURR, J. G. (1845): Beiträge zur fossilen Flora der Juraformation Württembergs. – Anhang an: Einladungs-Schrift zu der Feier des Geburtsfestes Sr. Majestät des Königs Wilhelm von Württemberg in der königl. polytechnischen Schule zu Stuttgart den 27. September 1845: 1–17, 3 Taf.; Stuttgart (Guttenberg).
- Küpper, K. (1968). Die Gattung Otozamites. Taxon, 17(5), 548–552.
- Zijlstra, G., & van Konijnenburg-van Cittert, J. H. (2019). (2710) Proposal to conserve the name Otozamites (fossil Cycadophyta: Bennettitales) against Otopteris. Taxon, 68(4), 874-875.
- SALFELD, Palaeontographica, 54(4): 186–188, Taf. 18
- Saporta. – BARALE, Documents des Laboratoires de Géologie Lyon, 81: 172–177, Abb. 45, Taf. 49–50.
- Keller, T., & Wilde, V. (2000). Ein Koniferenrest aus dem Posidonienschiefer des Unteren Jura (Schwarzer Jura [epsilon], Unter-Toarcium) von Süddeutschland. na.
- URLICHS, WILD & ZIEGLER, Stuttgarter Beitr. Naturkde.,Reihe C, 11: Abb. 50.
- MÜLLER-STOLL, W. R. & SCHULTZE-MOTEL, J.(1990): Gymnospermen-Hölzer des Deutschen Jura. Teil 3: Abietoid (modern) getüpfelte Hölzer. – Zeitschrift der deutschen geologischen Gesellschaft, 141/1–2: 61–77, 2 Abb., 2 Taf.; Hannover
- Süss, H., & Philippe, M. (1993). Holzanatomische Untersuchungen an einem fossilen Holz, Circoporoxylon grandiporosum Müller‐Stoll et Schultze‐Motel, aus dem Unteren Jura von Frankreich Mit 4 Abbildungen, einer Tabelle und 2 Tafeln. Feddes Repertorium, 104(7‐8), 451–463.
- Matzke, A. T., & Maisch, M. W. (2019). Palaeoecology and taphonomy of a Seirocrinus (Echinodermata: Crinoidea) colony from the Early Jurassic Posidonienschiefer Formation (Early Toarcian) of Dotternhausen (SW Germany). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 291(1), 89–107.
- SCHULTZE-MOTEL, J. (1960): Anatomische Untersuchungen an mesozoischen Gymnospermen-Hölzern. – Dissertation Pädagogische Hochschule Potsdam. 156 S., 25 Taf.; Potsdam. – [Unveröffentlicht; Zitat nach VOGELLEHNER (1982), die betreffende Arbeit konnte bisher nicht eingesehen werden] – (1962): Anatomische Untersuchungen an mesozoischen Gymnospermen-Hölzern. – wilde, landpflanzen-taphocoenose aus dem posidonienschiefer 11 Wissenschaftliche Zeitschrift der Pädagogischen Hochschule Potsdam. Mathematischnaturwissenschaftliche Reihe, 7(1961/62): 343–344; Potsdam. – [Autorreferat der unveröffentlichten Dissertation]
- Philippe, M., Zijlstra, G., Barbacka, M., & Greguss. (1999). Greguss's morphogenera of homoxylous fossil woods: a taxonomic and nomenclatural review. Taxon, 667-676.
- Philippe, M. (1991). Bois fossiles du jurassique de Franche-Comté (Doctoral dissertation, Lyon 1).
- Polgári, M., Philippe, M., Szábo-Drubina, M., & Tóth, M. (2005). Manganese-impregnated wood from a Toarcian manganese ore deposit, Epleny mine, Bakony Mts., Transdanubia, Hungary. Neues Jahrbuch für Geologie und Paläontologie-Monatshefte, 175–192.
- Philippe, M., Pacyna, G., Wawrzyniak, Z., Barbacka, M., Boka, K., Filipiak, P., ... & Uhl, D. (2015). News from an old wood—Agathoxylon keuperianum (Unger) nov. comb. in the Keuper of Poland and France. Review of Palaeobotany and Palynology, 221, 83–91.
- Mueller-Stoll, W. R. (1986). Evolutionary trends in gymnospermous wood structures during Mesozoic-Protopinaceous woods in the German Jurassic.
- Bamford, M. K., Philippe, M., & Thévenard, F. (2016). Long overdue extinction of the Protopinaceae. Review of palaeobotany and palynology, 234, 25–30.
- Philippe, M., & Thevenard, F. (1996). Distribution and palaeoecology of the Mesozoic wood genus Xenoxylon: palaeoclimatological implications for the Jurassic of Western Europe. Review of Palaeobotany and Palynology, 91(1-4), 353–370.
- Mtiller-Stoll, W.R. and Schultze-Motel, J., 1988. Gymnospermen Hölzer des deutschen Jura. I: Xenoxylon und Dadoxylon. Z. Dtsch. Geol. Ges., 139:63 81.
- Hallam, A. (1998). The determination of Jurassic environments using palaeoecological methods. Bulletin de la Société géologique de France, 169(5), 681–687.
- Savrda, C. E., & Bottjer, D. J. (1989). Anatomy and Implications of Bioturbated Beds in “Black Shale” Sequences: Examples from the Jurassic Posidonienschiefer (Southern Germany). PALAIOS, 4(4), 330. doi:10.2307/3514557
- Simpson, S. (1956). On the trace-fossil Chondrites. Quarterly Journal of the Geological Society, 112(1-4), 475–499.
- Osgood, R. G. (1975). The history of invertebrate ichnology. In The study of trace fossils (pp. 3–12). Springer, Berlin, Heidelberg.
- Hertweck, G., Wehrmann, A., & Liebezeit, G. (2007). Bioturbation structures of polychaetes in modern shallow marine environments and their analogues to Chondrites group traces. Palaeogeography, Palaeoclimatology, Palaeoecology, 245(3-4), 382–389.
- Baucon, A., Bednarz, M., Dufour, S., Felletti, F., Malgesini, G., De Carvalho, C. N., … McIlroy, D. (2019). Ethology of the trace fossil Chondrites: form, function and environment. Earth-Science Reviews, 102989. doi:10.1016/j.earscirev.2019.102989
- Izumi, K. (2012). Formation process of the trace fossil Phymatoderma granulata in the Lower Jurassic black shale (Posidonia Shale, southern Germany) and its paleoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 353, 116-122.
- Izumi, K. (2013). Geochemical composition of faecal pellets as an indicator of deposit‐feeding strategies in the trace fossil P hymatoderma. Lethaia, 46(4), 496-507.
- Bromley, R. G., & Ekdale, A. A. (1986). Composite ichnofabrics and tiering of burrows. Geological magazine, 123(1), 59-65.
- Brongniart, A. 1823. Observations sur les fucoides. Soc. Hist. Natur. Paris, Mem., 1:301-320.
- KOTAKE, N. (1992). Deep‐sea echiurans: possible producers of Zoophycos. Lethaia, 25(3), 311-316.
- Zhang, Li-Jun; Zhao, Zhao (2015). "Complex behavioural patterns and ethological analysis of the trace fossil Zoophycos: Evidence from the Lower Devonian of South China". Lethaia. 49 (2): 275–284. doi:10.1111/let.12146.
- Van Acken, D., Tütken, T., Daly, J. S., Schmid-Röhl, A., & Orr, P. J. (2019). Rhenium‑osmium geochronology of the Toarcian Posidonia Shale, SW Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 534, 109294.
- Keighley, D. G., & Pickerill, R. K. (1995). Commentary: the ichnotaxa Palaeophycus and Planolites: historical perspectives and recommendations.
- Oschmann, W. (2000). Der Posidonienschiefer in Südwest-Deutschland, Toarcium, Unterer Jura. In Europäische Fossillagerstätten (pp. 137-142). Springer, Berlin, Heidelberg.
- Bandel, K. (1973). A new name for the ichnogenus Cylindrichnus Bandel, 1967. Journal of Paleontology, 1002-1002.
- Nützel, A. & Schulbert, C. (2017): Faunenumschwung im frühen Jura Frankens. – Geologische Blätter für Nordost-Bayern, 67: 217-230, 7 Abb.; Erlangen
- W. Ohmert, V. Allia C. Arias et al. 1996. Die Grenzziehung Unter-/Mitteljura (Toarcium/Aalenium) bei Wittnau und Fuentelsaz [Determinig the boundary between Toarcium/Aalenium near Wittnau and Fuentelsaz]. Informationen Geologisches Landesamt Baden-Württemberg 8:1–52
- F. Papier. 2001. Die Gundershoffener Klamm. Fossilien 6/01:368–374
- A. Goldfuss, Petrefacta Germaniae. I. Divisio secunda: Radiariorum Reliquiae—Strahlenthiere der Vorwelt (Arnz & Co, Dusseldorf, 1831), pp. 165–240
- Ippolitov, A. P., Vinn, O., Kupriyanova, E. K., Jäger, M. (2014): Written in stone: history of serpulid polychaetes through time. – Memoirs of Museum Victoria, 71: 123–159
- K.O.A. Parsch. 1956. Die Serpulidenfauna des südwestdeutschen Jura. Palaeontographica Abteilung A 107:211–240
- Etter, W. (1994). Taphonomie. In Palökologie (pp. 128-176). Birkhäuser, Basel.
- KUHN, O. (1947): Gliederung und Fossilführung des Lias und Doggers in Franken. – Ber. naturforsch. Ges. Bamberg, 30: S. 33–89; Bamberg
- Jäger, M., & Schubert, S. (2008). Das Ober-Pliensbachium (Domerium) der Herforder Liasmulde; Teil 2, Serpuliden (Kalkröhrenwürmer). Geologie und Paläontologie in Westfalen, 71, 47-75.
- Vinn, O.; Mutvei, H. (2009). "Calcareous tubeworms of the Phanerozoic" (PDF). Estonian Journal of Earth Sciences. 58 (4): 286–296. doi:10.3176/earth.2009.4.07. Retrieved 2012-09-16.
- Manum,S.B. et al. (1991) Clitellate cocoons in freshwater deposits since the Triassic Zoologica Scripta Vol. 20 # 4 P. 347- 366
- Münster, R. G. (1831). Petrefacta Germaniae. In, Arnz & Co, 252.
- MÜNSTER, G. (1831). GRAF ZU (1831): Über das geognostische Vorkommen der Ammoneen in Deutschland. Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, 367-375.
- Caswell, B. A., Coe, A. L., & Cohen, A. S. (2009). New range data for marine invertebrate species across the early Toarcian (Early Jurassic) mass extinction. Journal of the Geological Society, 166(5), 859–872.
- Roemer, F. A. (1836). Die Versteinerungen des Nord-deutschen Oolithen-Gebirges, von Friedrich Adolph Roemer,... Hahn.
- Agassiz, L. (1840). Études critiques sur les mollusques fossiles. L'auteur.
- Kuhn, O., & Etter, W. (1994). Der Posidonienschiefer der Nordschweiz: Lithostratigraphie, Biostratigraphie und Fazies. Eclogae geologicae Helvetiae, 87(1), 113-138.
- Röhl, H. J., Schmid-Röhl, A., Oschmann, W., Frimmel, A., & Schwark, L. (2001). The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 165(1-2), 27-52.
- Lutikov, O.A., & Arp, G. (2020). Revision Monotis substriata (Münster, 1831) and new species of bivalve molluscs in the Lower Toarcian in northern Russia and southern Germany (family Oxytomidae Ichikawa, 1958). In Jurassic system of Russia: problems of stratigraphy and paleogeography (pp. 125-131).
- Jefferies, R. P. S., & Minton, P. (1965). The mode of life of two Jurassic species of Posidonia (Bivalvia). Palaeontology, 8(1), 156-185.
- Hauff, B. (1921). Untersuchung der Fossilfundstätten von Holzmaden im Posidonienschiefer des Oberen Lias Württembergs. Palaeontographica (1846-1933), 1-42.
- Kauffman, E.G., 1978. Benthic environments and paleoecology of the Posidonienschiefer (Toarcian). Neues Jahrb. Geol. Paleiontol. Abh., 157:18 36.
- Kauffman, E.G., 1981. Ecological reappraisal of the German Posidonienschiefer (Toarcian) and the stagnant basin model. In: J. Gray et al. (Editors), Communities of the Past. Hutchinson Ross, Stroudsburg, PA, pp. 311-381.
- Seilacher, A. (1982). Posidonia Shales (Toarcian, S. Germany): stagnant basin model revalidated. STEM Mucchi.
- Oschmann, W. (1994). Adaptive pathways of benthic organisms in marine oxygen-controlled environments. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 191(3), 393-444.
- Savrda, C. E., & Bottjer, D. J. (1991). Oxygen-related biofacies in marine strata: an overview and update. Geological Society, London, Special Publications, 58(1), 201-219.
- Röhl, H. J. (1998). Hochauflösende palökologische und sedimentologische Untersuchungen im Posidonienschiefer (Lias e)[epsilon)] von SW-Deutschland. Inst. und Museum für Geologie und Paläontologie.
- Hille, P. J. (2002). De fossielen uit de Posidonienschiefer van Holzmaden en omgeving. GEA, 35(2), 8-17.
- Waagen, W. (1864). Der Jura in Franken, Schwaben und der Schweiz verglichen nach seinen palaeontologischen Horizonten. Manz.
- Teichert, S., & Nützel, A. (2015). Early Jurassic anoxia triggered the evolution of the oldest holoplanktonic gastropod Coelodiscus minutus by means of heterochrony. Acta Palaeontologica Polonica, 60(2), 269–276.
- BROSAMLEN, R. 1909. Beitrag zur Kenntnis der Gastropoden des schwäibischen Jura. - Palaeontographica 56: 177-321.
- Gründel, J., Nützel, A., & Schulbert, C. (2009). Toarctocera (Gastropoda, Aporrhaidae): a new genus from the Jurassic (Toarcian/Aalenian) of South Germany and the early evolutionary history of the family Aporrhaidae. Paläontologische Zeitschrift, 83(4), 533.
- Bandel, K., & Hemleben, C. (1987). Jurassic heteropods and their modern counterparts (planktonic Gastropoda, Mollusca). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 174, 1-22.
- L. Rulleau. 2008. Les Nautiles du Lias et du Dogger de la Région Lyonnaise 1-149
- Schulbert, C. (2001). Die Ammonitenfauna und Stratigraphie der Tongrube Mistelgau bei Bayreuth (Oberfranken) (Vol. 4). Digital Druck AG.
- POMPECKJ, J. (1901). Der Jura zwischen Regensburg und Regenstauf: Geognostische Jahreshefte, v. 14.
- C. Schulbert. 2001. Die Ammonitenfauna und Stratigraphie der Tongrube Mistelgau bei Bayreuth (Oberfranken). Beihefte zu den Berichten der Naturwissenschaftlichen Gesellschaft Bayreuth e.V 4:1–183
- Jäger, M., & Fraaye, R. (1997). The diet of the Early Toarcian ammonite Harpoceras falciferum. Palaeontology, 40(2), 557-574.
- H. Keupp and R. Kohring. 1993. Ein Magensteinfund aus dem Lias Epsilon von Altdorf (Mittelfranken); (A gastrolith from the Lias Epsilon of Altdorf (Middle Franken). Geologische Blätter für Nordost-Bayern und angrenzende Gebiete 43(1-3):95–104
- Hille, P. J. (2002). De fossielen uit de Posidonienschiefer van Holzmaden en omgeving. GEA, 35(2), 8–17.
- D. Delsate and R. Weis. 2010. La Couche à Crassum (Toarcien moyen) au Luxembourg: stratigraphie et faunes de la coupe de Dudelange-Zoufftgen. Ferrantia 62:35-62
- Arp, G., & Gropengießer, S. (2016). The Monotis–Dactylioceras Bed in the Posidonienschiefer Formation (Toarcian, southern Germany): condensed section, tempestite, or tsunami-generated deposit?. PalZ, 90(2), 271–286.
- Phylloceras heterophyllum (Sowerby, 1820) in Species 2000 & ITIS Catalogue of Life: 2019, Catalogue of Life
- Fischer, K. C., & KC, F. (1981). Chitinobelus acifer ngn sp., ein ungewöhnlicher Belemnit aus dem Lias epsilon von Holzmaden.
- Bode, A. (1933). Chondroteuthis wunnenbergi ngn sp., eine neue Belemnoideenform, in gunstiger Erhaltung. Sonderabdruck aus dem 25. Jahresbericht des Niedersachsischen geologischen Vereins zu Hannover (Geologische Abteilung der Naturhistorischen Gesellschaft zu Hannover), 25, 33–66.
- Schlegelmilch, R. (1998). Formenkundlicher Teil. In Die Belemniten des süddeutschen Jura (pp. 39-89). Spektrum Akademischer Verlag, Heidelberg.
- Riegraf, W. (1980). Revision der Belemniten des Schwäbischen Jura.
- Riegraf, W. (2000). The belemnites described by Baron Ernst Friedrich von Schlotheim (1764–1832). PalZ, 74(3), 281–303.
- Riegraf, W., & Reitner, J. (1979). Die" Weichteilbelemniten" des Posidonienschiefers (Untertoarcium) von Holzmaden (Baden-Württemberg) sind Fälschungen. Neues Jahrbuch für Geologie und Paläontologie,, (5), 291–304.
- Fuchs, D., Keupp, H., & Schweigert, G. (2013). First record of a complete arm crown of the Early Jurassic coleoid Loligosepia (Cephalopoda). Paläontologische Zeitschrift, 87(3), 431–435.
- Doguzhaeva, L. A., & Mutvei, H. (2003). Gladius composition and ultrastructure in extinct squid-like coleoids: Loligosepia, Trachyteuthis and Teudopsis. Revue de Paléobiologie, 22(2), 877-894.
- Fuchs, D., & Weis, R. (2008). Taxonomy, morphology and phylogeny of Lower Jurassic loligosepiid coleoids (Cephalopoda). Neues Jahrbuch Für Geologie Und Paläontologie - Abhandlungen, 249(1), 93–112. doi:10.1127/0077-7749/2008/0249-0093
- Riegraf, W. (1997). On the proposed conservation of the names Geopeltis Regteren Altena, 1949, Geoteuthis Muenster, 1843, Jeletzkyteuthis Doyle, 1990, Loligosepia Quenstedt, 1839, Parabelopeltis Naef, 1921, Paraplesioteuthis Naef, 1921 and Belemnotheutis montefiorei Buckman, 1880 (Mollusca, Coleoidea). BULLETIN OF ZOOLOGICAL NOMENCLATURE, 54, 184-184.
- VOLTZ, P. L. (1840): Observations sur les Belopeltis ou lames dorsales de Bélemnites. – Mémoires du Société d’Histoire Naturelle de Strasbourg, 1: 1-38
- MÜNSTER, G. GRAF ZU (1843): Die schalenlosen Cephalopoden im unteren Jura, den Lias-Schiefern von Franken und Schwaben. – Beiträge zur Petrefaktenkunde, 6: 57–77
- Fuchs, D., Donovan, D. T., & Keupp, H. (2013). Taxonomic revision of “Onychoteuthis” conocauda Quenstedt, 1849 (Cephalopoda: Coleoidea). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 270(3), 245–255.
- Jenny, D., Fuchs, D., Arkhipkin, A.I. et al. Predatory behaviour and taphonomy of a Jurassic belemnoid coleoid (Diplobelida, Cephalopoda). Sci Rep 9, 7944 (2019). https://doi.org/10.1038/s41598-019-44260-w
- Tripp, K. (1938). Der Stammbaum der Belemniten des Lias Schwabens. Paläontologische Zeitschrift, 19(3-4), 180-198.
- Reitner, J., & Engeser, T. (1982). Zwei neue Coleoidea-Arten aus dem Posidonienschiefer (Untertoarcium) aus der Gegend von Holzmaden (Baden-Württemberg). Stuttgarter Beiträge zur Naturkunde: Serie B, Geologie und Paläontologie, 84(19).
- W. Riegraf. 1987. On Lower and Upper Jurassic dibranchiate cephalopods from Germany and England. Palaeontologische Zeitschrift 61:261–272
- Fuchs, D., & Weis, R. (2010). Taxonomy, morphology and phylogeny of Lower Jurassic teudopseid coleoids (Cephalopoda). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 257(3), 351–366.
- Volk, K. G. (1923). Im Jura. In Geologisches Wanderbuch (pp. 75–149). Vieweg+ Teubner Verlag, Wiesbaden.
- Beyermann, K., & Hasenmaier, D. (1977). Identification of 180 million years old, probably unchanged melanine.
- Glass, K., Ito, S., Wilby, P. R., Sota, T., Nakamura, A., Bowers, C. R., ... & Wakamatsu, K. (2013). Impact of diagenesis and maturation on the survival of eumelanin in the fossil record. Organic geochemistry, 64, 29–37.
- Schweigert, G. (2007). Juracyclus posidoniae n. gen. and sp., the first cycloid arthropod from the Jurassic. Journal of Paleontology, 81(1), 213–215.
- H. Knitter Biostratigraphische Untersuchungen mit Ostracoden im Toarcien Süddentschlands Facies, Erlangen, 8 (1983), pp. 213-262
- A. Lord, A. Moorley On Ogmoconcha ambo sp. nov. Amsterdam. Stereo-Atlas of ostracod shells, 2 (1974), pp. 9-16
- H. Malz Eine Entwicklungsreihe “vallater” Ogmoconchen (Ostracoda) im S-deutschen Lias Senckbergiana lethaea, 55 (6) (1975), pp. 485-505
- H. Malz Zur Taxonomie “Glattschaliger” Lias Ostracoden Senckbergiana Lethaea, 52 (1971), pp. 433-455
- H. Malz Zur Kenntnis Ostracoden-Arten der Gattungen Kinkelinella und Praeschuleridea Senckbergiana Lethaea, 47 (4) (1966), pp. 385-404
- W. Fischer Neue Arten Ostracoden-Gattung Polycope SARS (1865) aus dem Oberen Lias (Württenberg) Neues Jahrbuch für Geologie und Paläontologie - Monatshefte, 8 (1961), pp. 497-501
- H. Knitter, W. Riegraf Biostratigraphie (Cephalopoden, Ostracoden ) des Oberen Toarcium von Blumberg Achdorf, Wutachs und Weilheim/Teck (Baden-Württemberg) Jahrbuch der Geologischen Landesamt Baden-Württemberg, Freiburg, 26 (1984), pp. 57-97
- Fraaye, R., & Jäger, M. (1995). Decapods in ammonite shells: examples of inquilinism from the Jurassic of England and Germany. Palaeontology, 38(1), 63-76.
- Quenstedt, F. A. 1850[1854]. Ueber Mecochirus im braunen Jura bei Gammelshausen und einige andere Krebse. Jahresh. Ver. vaterl. Naturlt. Wurttembetg, 6: 186–197
- Schweigert, G. (2003). The lobster genus Uncina Quenstedt, 1851 (Crustacea: Decapoda: Astacidea: Uncinidae) form the Lower Jurassic. Stuttgarter Beitrage zur Naturkunde, 332, 1-43.
- Audo, D. (2016). Tonneleryon, a new gregarious polychelidan lobster from the early Toarcian Posidonia Shale of Holzmaden (Germany). Neues Jahrbuch Für Geologie Und Paläontologie - Abhandlungen, 280(3), 285–298. doi:10.1127/njgpa/2016/0580
- Beurlen, K. (1944). Neue Reste von Proeryon (Crustacea Decapoda, Eryonidea). Neues Jahrb Miner Geolog Paläont, 88, 374–384.
- Beurlen, K. (1930). Nachträge zur Decapodenfauna des schwäbischen Jura. Universität.
- O. Kuhn Neue Crustacea Decapoda und Insecta aus dem untersten Lias ɛ von Nordfranken. Palaeontographica Abteilung A, 101 (1952), pp. 153–166
- H. Meyer von Beiträge zu Eryon, einem Geschlechte fossiler langschwänziger Krebse, Nova Acta Academiae Caesareae Leopoldino-Carolinae Germanicae Naturae Curiosorum, 18 (1) (1836), pp. 272-284
- K. Beurlen Die Decapoden des Schwäbischen Jura mit Ausnahme der aus den oberjurassischen Plattenkalken stammenden. Beiträge zur Systematik und Stammesgeschichte der Decapoden Palaeontographica, 70 (1928), pp. 115–278
- Audo, D., Schweigert, G., & Charbonnier, S. (2019, November). Proeryon, a geographically and stratigraphically widespread genus of polychelidan lobsters. In Annales de Paléontologie (p. 102376). Elsevier Masson.
- Hauff B, Hauff RB. 1981. Das Holzmadenbuch. 3rd ed. Holzmaden: selfpublished
- Gregor, H. J. (2008). Der Jura in Deutschland. Tropische Meere–Land unter. Biologie in unserer Zeit, 38(2), 102–109.
- Schweigert, G., & Röper, M. (2001). Neue Krebse der Gattung Palaeastacus (Crustacea: Decapoda: Erymidae) aus oberjurassischen Plattenkalken Süddeutschlands. Staatliches Museum für Naturkunde.
- Seilacher, A., Reif, W. E., & Westphal, F. (1985). Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 311(1148), 5–24.
- Beurlen K (1930) Nachtra¨ge zur Decapodenfauna des schwa¨bischen Jura. I. Neue Decapodenfunde aus dem Posidonienschiefer von Holzmaden. Neues Jahrb Miner Geolog Pala¨ont 64: 219–234.
- Van Straelen V. 1925. Contribution à l’étude des crustacés décapodes de la période jurassique. Mémoires de la Classe des Sciences de l’Académie royale de Belgique 7: 1–462.
- Schweitzer CE, Feldmann RM, Garassino A, Karasawa H, Schweigert G. 2010. Systematic list of fossil decapod crustacean species. Crustaceana Monographs 10: 1–222.
- Schweigert, G. (2013). A new record of the enigmatic lobster genus Stenodactylina Beurlen, 1928 (Crustacea: Decapoda: Erymidae) from the Middle Jurassic of south-western Germany. Paläontologische Zeitschrift, 87(3), 409–413.
- Devillez, J., & Charbonnier, S. (2019). Review of the Early and Middle Jurassic erymid lobsters (Crustacea: Decapoda) Révision des Érymides (Crustacea: Decapoda) du Jurassique inférieur et moyen. Bulletin de la Société Géologique de France, 190(1).
- Beurlen K. 1928. Die Decapoden des Schwäbischen Jura mit Ausnahme der aus den oberjurassischen Plattenkalken stammenden. Palaeontographica 70: 115–278.
- Förster R, Rieber H. 1982. Der älteste Vertreter der Gattung Palaeastacus (Crustacea, Decapoda), Palaeastacus argoviensis n. sp., aus dem unteren Dogger der Nordschweiz. Eclogae geologicae Helvetiae 75(3): 773–778.
- Haug, J. T., Haug, C., & Schweigert, G. (2019). The oldest “intermetamorphic” larva of an achelatan lobster from the Lower Jurassic Posidonia Shale, South Germany. Acta Palaeontologica Polonica, 64(4), 685–692.
- Klompmaker AA, Fraaije RHB. 2012. Animal Behavior frozen in time: gregarious behavior of early jurassic lobsters within an ammonoid body chamber. PLOS ONE. 7(3):e31893. doi:10.1371/journal
- Gale, A., & Schweigert, G. (2016). A new phosphatic‐shelled cirripede (Crustacea, Thoracica) from the Lower Jurassic (Toarcian) of Germany–the oldest epiplanktonic barnacle. Palaeontology, 59(1), 59–70.
- Bode, A. (1951). Ein liassischer Scorpionide. Palaeontologische Zeitschrift, 24(1–2), 58–65.
- Dunlop, J. A., Kamenz, C., & Scholtz, G. (2007). Reinterpreting the morphology of the Jurassic scorpion Liassoscorpionides. Arthropod structure & development, 36(2), 245–252.
- Ansorge, J. (2003). Insects from the lower Toarcian of middle Europe and England. Acta zoologica cracoviensia, 46(SUPPL.), 291–310.
- J. Ansorge. 1999. Heterophlebia buckmani (Brodie 1845) (Odonata: "Anisozygoptera") - das erste Insekt aus dem untertoarcischen Posidonienschiefer von Holzmaden (Württemberg, SW Deutschland). Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 275:1-9
- A. Bode. 1953. Die Insektenfauna des Ostniedersachsischen Oberen Lias. Palaeontographica Abteilung A 103:1–375
- J. Ansorge. 2002. Revision of the "Trichoptera" described by Geinitz and Handlirsch from the Lower Toarcian of Dobbertin (Germany) based on new material. Proceedings of the 10th International Symposium on Trichoptera - Nova Supplementa Entomologica 15:55–74
- W. Etter and O. Kuhn. 2000. An articulated dragonfly (Insecta, Odonata) from the Upper Liassic Posidonia Shale of Northern Switzerland. Palaeontology 43:967–977
- A. Nel, X. Martínez-Delclòs, J. C. Paicheler and M. Henrotay. 1993. Les "Anisozygoptera" fossiles Phylogenie et classification (Odonata). Martinia 3:1-311
- G. Bechly. 2018. First record and a new species of the fossil dragonfly genus Proinogomphus (Odonata: Liassogomphidae) from the Early Jurassic of Bascharage in the Grand Duchy of Luxembourg. Zootaxa 4450:108-114
- J. Ansorge, M. Reich Komplette Libelle Sphenophlebia pommerana Ansorge, 1996 Fossilien (Journal für Erdgeschichte), 35 (1) (2018), pp. 60-61
- Handlirsch, A. (1939). Neue Untersuchungen über die fossilen Insekten mit Ergänzungen und Nachträgen sowie Ausblicken auf phylogenetische, palaeogeographische und allgemein biologische Probleme. II. Teil. Annalen des naturhistorischen Museums in Wien, 1–240.
- Nel, A. N. D. R. É., Bechly, G. Ü. N. T. E. R., Delclòs, X. A. V. I. E. R., & Huang, D. Y. (2009). New and poorly known Mesozoic damsel-dragonflies (Odonata: Isophlebioidea: Campterophlebiidae, Isophlebiidae). Palaeodiversity, 2, 209–232.
- A. Nel and R. Weis. 2017. A new Early Jurassic damselfly from the Grand Duchy of Luxembourg (Odonata: Campterophlebiidae). Alcheringa 41:378-382
- G. Fleck, G. Bechly, X. Martinez-Delclos, E. Jarzembowski, R. Coram and A. Nel. 2003. Phylogeny and classification of the Stenophlebioptera (Odonata: Epiproctophora). Annales de la Société Entomologique de France 39(1):55-93
- P. Vršanský and J. Ansorge. 2007. Lower Jurassic cockroaches (Insecta: Blattaria ) from Germany and England. African Invertebrates 48(1):103–126
- O. Kuhn. 1952. Neue Crustacea Decapoda und Insecta aus dem Untersten Lias von Nordfranken. Palaeontographica Abteilung A 101:153-166
- Berger, G. (1989). Über Insektenfunde beim Kanalbau. Fossilien, 1989(1), 44-47.
- Ansorge, J. (1996). Zur systematischen Position vonSchesslitziella haupti Kuhn 1952 (Insecta: Phasmatodea) aus dem Oberen Lias von Nordfranken (Deutschland). Paläontologische Zeitschrift, 70(3-4), 475–479.
- Kopeć, K., Soszyńska-Maj, A., Gehler, A., Ansorge, J., & Krzemiński, W. (2018). Mecoptera and Diptera from the early Toarcian (Early Jurassic) deposits of Wolfsburg–Große Kley (Lower Saxony, Germany). Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 107(2-3), 163-171.
- Ansorge, J. (1994). Tanyderidae and Psychodidae (Insecta: Diptera) from the Lower Jurassic of northeastern Germany. PalZ, 68(1-2), 199–210. doi:10.1007/bf02989440
- Handlirsch, A. (1906). Die fossilen Insekten und die Phylogenie der rezenten Formen: ein Handbuch für Paläontologen und Zoologen.[A](1906-1908). Engelmann.
- A. G. Ponomarenko. 1995. Upper Liassic neuropterans (Insecta) from Lower Saxony, Germany. Russian Entomological Journal 4(1-4):73-89
- Ansorge, J., & Makarkin, V. N. (2020). The oldest giant lacewings (Neuroptera: Kalligrammatidae) from the Lower Jurassic of Germany. Palaeoworld. doi:10.1016/j.palwor.2020.07.001
- A. Nel and M. Henrotay. 1994. Les Chrysopidae Mésozoïques. État actuel des connaissances. Description d'un nouveau genre et nouvelle espèce dans le Jurassique inférieur (Lias) (Insecta: Neuroptera). Annales de la Société Entomologique de France 30:295-318
- A. Nel. 1996. Un Tettigarctidae fossile du Lias européen (Cicadomorpha, Cicadoidea, Tettigarctidae). École Pratique des Hautes Études, Biologie et Évolution des Insectes 9:83-94
- J. Szwedo, R. Weis, and A. Nel. 2017. A bizarre sternorrhynchan wing from the Lower Jurassic of Luxembourg (Hemiptera: Sternorrhyncha: Pincombeomorpha?). Historical Biology 31:806-812
- J. Szwedo. 2011. The Coleorrhyncha (Insecta: Hemiptera) of the European Jurassic, with a description of a new genus from the Toarcian of Luxembourg. Volumina Jurassica 9:3-20
- A. Nel, J. F. Petrulevicius, and M. Henrotay. 2004. New Early Jurassic sawflies from Luxembourg: the oldest record of Tenthredinoidea (Hymenoptera: “Symphyta”). Acta Palaeontologica Polonica 49(2):283-288
- M. Henrotay, A. Nel, and E. A. Jarzembowski. 1997. New Protomyrmeleontid Damselflies from the Triassic of Australia and the Liassic of Luxembourg, with the description of Tillyardomyrmeleon petermilleri gen. nov. & spec. nov. (Archizygoptera: Protomyrmeleontidae). Odonatologica 26(4):395-404
- A. Nel and M. Henrotay. 1992. Les Protomyrmeleontidae (Odonatoptera, Odonata, Archizygoptera stat. rest.): état actuel des connaissances. Annales de Paléontologie 78:1-47
- A. Bode. 1905. Orthoptera and Neuroptera from the Upper Lias of Braunschweig. Yearbook of the Royal Prussian State Geological Institute and Mining Academy in Berlin 25 : 218-245
- M. J. Simms. 1988. An intact comatulid crinoid from the Toarcian of Southern Germany. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 140:1-7
- M. Kutscher. 1992. Ophiomusium geisingense n.sp. eine neue Ophiurenart aus dem Lias Epsilon (Unteres Toarcium) von Bachhausen/Bayern. Archaeopteryx 10:25-30
- Kutscher, M., & Villier, L. (2003). Ophiuroid remains from the Toarcian of Sainte-Verge (Deux-Sèvres, France): paleobiological perspectives. Geobios, 36(2), 179-194.
- H. Hess. 1991. Neue Schlangensterne aus dem Toarcium und Aalenium des Schwäbischen Jura (Baden-Württemberg). Stuttgarter Beiträge zur Naturkunde, serie B, Geologie und Paläontologie 180:1-11
- Gall, J. C. (1983). The Holzmaden Bituminous Shale Sea. In Ancient Sedimentary Environments and the Habitats of Living Organisms (pp. 158-166). Springer, Berlin, Heidelberg.
- Riegraf, W., Werner, G., & Lörcher, F. (1984). Der Posidonienschiefer: Biostratigraphie, Fauna und Fazies des südwestdeutschen Untertoarciums (Lias e). F. Enke.
- Zuidema, G., & de Wit, W. (1980). Zeeëgels in vogelvlucht: systematiek der Echinoidea. GEA, 13(3), 66-86.
- Zuidema, G. (1980). Het prepareren van zeeëgels. GEA, 13(3), 89-91.
- M. Jäger. 1995. Echinodermata aus dem Ober-Toarcium und Aalenium Deutschlands I. Crinoidea: Cyrtocrinina und Millericrinina. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 226:1-51
- Miller, J. S. (1821). A Natural History of the Crinoidea, Or Lily-shaped Animals; with Observations on the Genera, Asteria, Euryale. Comatula Et Marsupites. Frost.
- Simms 1989.Contrasting lifestyles in lower Jurassic crinoids: A comparison of benthic and pseudopelagic Isocrinida. Palaeontology. 29: 475-493.
- Seilacher, A., Drozdzewski, G., & Haude, R. (1968). Form and function of the stem in a pseudoplanktonic crinoid (Seirocrinus). Palaeontology, 11(2), 275-282.
- Haude, R., & Jangoux, M. (1980, June). Constructional morphology of the stems of Pentacrinitidae, and mode of life of Seirocrinus. In Proceedings of the European Colloquium on Echinoderms, Brussels. AA Balkema, Rotterdam (pp. 17-23).
- Hagdorn, H. (2016). From benthic to pseudoplanktonic life: morphological remodeling of the Triassic crinoid Traumatocrinus and the Jurassic Seirocrinus during habitat change. PalZ, 90(2), 225-241.
- Hunter, A. W., Mitchell, E. G., Casenove, D., & Mayers, C. (2019). Reconstructing the ecology of a Jurassic pseudoplanktonic megaraft colony. bioRxiv, 566844.
- Rasmussen, H. W. (1977). Function and attachment of the stem in Isocrinidae and Pentacrinitidae: review and interpretation. Lethaia, 10(1), 51-57.
- R. B. Hauff. 1984. Pentacrinites quenstedti (Oppel) aus dem oberen Untertoarcium (Lias Epsilon) von Ohmden bei Holzmaden (SW-Deutschland). Palaeontologische Zeitschrift 58:255-263
- D. Delsate. 2003. Une nouvelle faune des poissons et requins Toarciens du sud du Luxembourg (Dudelange) et de L'Allemange (Schömberg). Bulletin de l'Académie Lorrain des Sciences 42:13-49
- A. S. Woodward. 1889. Catalogue of the Fossil Fishes in the British Museum (Natural History) Part 1 1–613
- Klug, S., & Kriwet, J. (2008). A new basal galeomorph shark (Synechodontiformes, Neoselachii) from the Early Jurassic of Europe. Naturwissenschaften, 95(5), 443–448. doi:10.1007/s00114-007-0341-0
- MAISEY, J. G. (1977). The fossil selachian fishes Palaeospinax Egerton, 1872 and Nemacanthus Agassiz, 1837. Zoological Journal of the Linnean Society, 60(3), 259–273. doi:10.1111/j.1096-3642.1977.tb01029.x
- D. Thies. 1993. New evidence of Annea and Jurobatos, two rare neoselachians (Pisces, Chondrichthyes) from the Jurassic of Europe. Belgian Geological Survey, Professional Paper, Elasmobranches et Stratigraphie 264:137-146
- M. W. Maisch and A. T. Matzke. 2016. A new hybodontid shark (Chondrichthyes, Hybodontiformes) from the Lower Jurassic Posidonienschiefer Formation of Dotternhausen, SW Germany. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 280:241-257
- F. A. Quenstedt. 1882. Bdellodus bollensis aus dem Posidonienschiefer von Boll. Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg 38:132-142
- Jaekel, O. M. J. (1906). Neue rekonstruktionen von Pleurancanthus sessilis und von Polyacrodus (Hybodus) hauffianus. JF Starcke.
- Fraas, E. (1895). Ein Fund von Skeletresten von Hybodus (Hybodus Hauffianus E. Fraas.
- Schmidt, M. (1921). Hybodus hauffianus und die Belemnitenschlachtfelder. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg, 77, 103–107.
- Duffin, C. J. (1997). The dentition of Hybodus hauffianus Faas, 1895 (Toarcian, Early Jurassic)/By Christopher J Duffin; mit dt. Zus: Stuttgarter Beiträge zur Naturkunde: Serie B.
- D. Thies. 1992. A new species of Palaeospinax (Chondrichthyes, Neoselachii) from the Lower Jurassic Posidonia Shale of southern Germany. Palaeontologische Zeitschrift 66:137-146
- C. J. Duffin. 1995. Holocephalans in the Staatliches Museum für Naturkunde in Stuttgart 3. First chimaeroid from the Lias of Baden-Württemberg (Early Toarcian of Ohmden). Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 231:1–12
- E. Fraas. 1910. Chimäridenreste aus dem oberen Lias von Holzmaden. Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg 66:55–63
- Duffin, C. J. (1983). Holocephalans in the Staatliches Museum für Naturkunde in Stuttgart. 1. Myriacanthoids and squalorajoids.
- Reif, W. E. (1974). Metopacanthus sp.(Holocephali) und Palaeospinax egertoni S. Woodward (Selachii) aus dem unteren Toarcium von Holzmaden. Staatl. Museum für Naturkunde.
- Duffin, C. J., & Joiko, L. (2020). A fin spine of Recurvacanthus (Myriacanthidae, Holocephali) from the Posidonienschiefer (Early Jurassic) of SW Germany. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 296(3), 317-326.
- D. Delsate and L. W. Candoni. 2001. Description de nouveaux morphotypes dentaires de Batomorphii toarciens (Jurassique inférieur) du Bassin de Paris: Archaeobatidae nov fam. Bull. Soc. Nat. Luxemb 102:131-143
- Ebert, M., Thies, D., & Hauff, R. B. (2020). First evidence of ganoin-scaled Halecomorphi (Neopterygii) in the Lower Jurassic of Holzmaden and Ohmden, Germany. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 295(3), 307-326.
- White, E. I. (1925). LXIX.—Additions to the upper Liassic fish-fauna of Holzmaden. Annals and Magazine of Natural History, 15(90), 601–611. doi:10.1080/00222932508633256
- E. E. Maxwell and S. Stumpf. 2017. Revision of Saurorhynchus (Actinopterygii: Saurichthyidae) from the Early Jurassic of England and Germany. European Journal of Taxonomy 321:1-29
- Hennig, E. (1918). Uber Ptycholepis bollensis. Jh. Ver. vaterl. Naturk, (74), 173.
- Wenz, S. (1959). Etude de Ptycholepis bollensis, poisson du Lias superieur de l'Yonne et du Wurtemberg. Bulletin de la Société Géologique de France, 7(9), 916-928.
- L. Taverne and E. Steurbaut. 2017. Osteology and relationships of Luxembourgichthys ("Pholidophorus") friedeni gen. nov. (Teleostei, "Pholidophoriformes") from the Lower Jurassic of Belgium and the Grand Duchy of Luxembourg. Geologica Belgica 20:53-67
- A. S. Woodward. 1895. Catalogue of the Fossil Fishes in the British Museum (Natural History), Part III 1–544
- Arratia, G., & Thies, D. (2001). A new teleost (Osteichthyes, Actinopterygii) from the Early Jurassic Posidonia shale of northern Germany. Fossil Record, 4(1), 167-187.
- Arratia, G. (2003). Leptolepis, Paraleptolepis (Teleostei) and a new fish name. Mitteilungen aus dem Museum für Naturkunde in Berlin. Fossil Record, 6(1), 157-159.
- T. Bürgin. 2000. Euthynotus cf. incognitus (Actinopterygii, Pachycormidae) als Mageninhalt eines Fischsauriers aus dem Posidonienschiefer Süddeutchlands (Unterer Jura, Lias epsilon). Eclogae Geologicae Helvetiae 93:491-496
- Woodward, A. S. (1916). I.—On a New Specimen of the Liassic Pachycormid Fish Saurostomus esocinus, Agassiz. Geological Magazine, 3(2), 49–51.
- Lindkvist, M. (2012). A phylogenetic appraisal of pachycormus bollensis: implications for Pachycormiform evolution.
- Wretman L., Blom H., and Kear B. P. (2016): Resolution of the Early Jurassic actinopterygian fish Pachycormus and a dispersal hypothesis for Pachycormiformes. Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2016.1206022.
- Přikryl, T., Košták, M., Mazuch, M., & Mikuláš, R. (2012). Evidence for fish predation on a coleoid cephalopod from the Lower Jurassic Posidonia Shale of Germany. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 263(1), 25-33.
- Agassiz, L. (1843). Recherches sur les poissons fossiles.. (Vol. 2). Petitpierre.
- A. S. Woodward. 1895. Catalogue of the Fossil Fishes in the British Museum (Natural History), Part III 1-544
- Hauff, B. 1953 Ohmdenia multidentata nov. gen. et nov. sp. Ein neuer grober Fischfund aus den Posidonienschiefern des Lias e von Ohmden/Holzmaden in Württemburg. Neues Jahrb. Geol. P.-A. 97, 39–50
- M. Friedmann. 2012. Parallel evolutionary trajectories underlie the origin of the giant suspension-feeding whales and bony fish. Proceedings of the Royal Society B 279: 944–951
- Woodward, A. S. (1893). On the cranial osteology of the Mesozoic ganoid fishes, Lepidotus and Dapedius. In Proceedings, Zoological Society of London (Vol. 38, pp. 559–565).
- Thies, D., & Waschkewitz, J. (2016). Redescription of Dapedium pholidotum (Agassiz, 1832)(Actinopterygii, Neopterygii) from the Lower Jurassic Posidonia Shale, with comments on the phylogenetic position of Dapedium Leach, 1822. Journal of Systematic Palaeontology, 14(4), 339-364.
- Thies, D., & Hauff, R. B. (2011). A new species of Dapedium Leach, 1822 (Actinopterygii, Neopterygii, Semionotiformes) from the Early Jurassic of South Germany. Palaeodiversity, 4, 185–221.
- Thies, D. (1989). Sinneslinien bei dem Knochenfisch Lepidotes elvensis (Blainville 1818)(Actinopterygii, Semionotiformes) aus dem Oberlias (Unter-Toarcium) von Grimmen in der DDR. Neues Jahrbuch für Geologie und Paläontologie. Monatshefte, (11), 692–704.
- Thies, D. (1989). Der Hirnschädel und das Gehirn von Tetragonolepis semicincta Bronn 1830 (Actinopterygii, $\dagger $ Semionotiformes). Palaeontographica Abteilung A, 1–32.
- Hennig, E. (1925). Chondrosteus Hindenburgi Pomp.---Ein «Stör» des württembergischen Ölschiefers (Lias $\epsilon $). Palaeontographica (1846-1933), 115–134.
- KORN, D. Die Ammonoideen-Fauna der Plutyclymenia ahnulata-Zone vom Kattensiepen.
- Hilton, E. J. (2002). Observations on rostral canal bones of two species of Acipenser (Actinopterygii, Acipenseriformes). Copeia, 2002(1), 213–219.
- Hennig, E. (1951). Trachymetopon liassicum, Ald., ein Reisen-Crossopterygier aus Schwäbischem Ober-Lias. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, Stuttgart, 94, 67-79.
- Dutel, Hugo; Herbin, Marc; Clément, Gaël (2015-05-04). "First occurrence of a mawsoniid coelacanth in the Early Jurassic of Europe". Journal of Vertebrate Paleontology. 35 (3): e929581. doi:10.1080/02724634.2014.929581. ISSN 0272-4634.
- Dutel, H., Pennetier, E., & Pennetier, G. (2014). A giant marine coelacanth from the Jurassic of Normandy, France. Journal of Vertebrate Paleontology, 34(5), 1239–1242.
- Theodori, C. V. (1843). Über einen kolossalen Ichthyosaurus trigonodon. Gelehrte Anzeigen der Königlich Bayerischen Akademie der Wissenschaften, München, 16, 906-11.
- McGowan C. (1996). "Giant ichthyosaurs of the Early Jurassic". Canadian Journal of Earth Sciences 33(7): 1011–1021
- Thies, D., & Hauff, R. B. (2013). A Speiballen from the lower jurassic posidonia shale of South Germany. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 267(1), 117–124.
- Pardo-Perez, J. M., Kear, B. P., Mallison, H., Gomez, M., Moroni, M., & Maxwell, E. E. (2018). Pathological survey on Temnodontosaurus from the Early Jurassic of southern Germany. PLOS ONE, 13(10).
- Anderson, K. L., Druckenmiller, P. S., Erickson, G. M., & Maxwell, E. E. (2019). Skeletal microstructure of Stenopterygius quadriscissus (Reptilia, Ichthyosauria) from the Posidonienschiefer (Posidonia Shale, Lower Jurassic) of Germany. Palaeontology, 62(3), 433–449.
- Miedema, F., & Maxwell, E. E. (2019). Ontogeny of the braincase in Stenopterygius (Reptilia, Ichthyosauria) from the Lower Jurassic of Germany. Journal of Vertebrate Paleontology, 39(4), e1675164.
- Dick, D. G., & Maxwell, E. E. (2015). Ontogenetic tooth reduction in Stenopterygius quadriscissus (Reptilia: Ichthyosauria): negative allometry, changes in growth rate, and early senescence of the dental lamina. PLOS ONE, 10(11).
- Maxwell, E. E. (2012). New Metrics To Differentiate Species of Stenopterygius (Reptilia: Ichthyosauria) from the Lower Jurassic of Southwestern Germany DIFFERENTIATING SPECIES OF STENOPTERYGIUS (ICHTHYOSAURIA). Journal of Paleontology, 86(1), 105–115.
- Lindgren J, Sjövall P, Thiel V, Zheng W, Ito S, Wakamatsu K, Hauff R, Kear BP, Engdahl A, Alwmark C, Eriksson ME, Jarenmark M, Sachs S, Ahlberg PE, Marone F, Kuriyama T, Gustafsson O, Malmberg P, Thomen A, Rodriguez-Meizoso I, Uvdal P, Ojika M, Schweitzer MH. 2018. Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur. Nature. https://doi.org/10.1038/s41586-018-0775-x
- Dick, D. G., Schweigert, G., & Maxwell, E. E. (2016). Trophic niche ontogeny and palaeoecology of early Toarcian Stenopterygius(Reptilia: Ichthyosauria). Palaeontology, 59(3), 423–431. doi:10.1111/pala.12232
- Maisch, M. W. (2001). Neue Exemplare der seltenen Ichthyosauriergattung Suevoleviathan Maisch 1998 aus dem Unteren Jura von Südwestdeutschland. Geologica et Palaeontologica, 35, 145-160.
- Maisch, M. W. (1998). A new ichthyosaur genus from the Posidonia Shale (Lower Toarcian, Jurassic) of Holzmaden, SW-Germany with comments on the phylogeny of post-Triassic ichthyosaurs. Neues Jahrbuch Fur Geologie Und Palaontologie Abhandlungen, 209, 47–48.
- 2018. Redescription of the ‘lost’ holotype of Suevoleviathan integer (Bronn, 1844) (Reptilia: Ichthyosauria). Journal of Vertebrate Paleontology 38(2):e1439833
- Michael W. Maisch (2008). "Revision der Gattung Stenopterygius Jaekel, 1904 emend. von Huene, 1922 (Reptilia: Ichthyosauria) aus dem unteren Jura Westeuropas" (PDF). Palaeodiversity. 1: 227–271.
- Maxwell, Erin E. and Cortés, Dirley. 2020. A revision of the Early Jurassic ichthyosaur Hauffiopteryx (Reptilia: Ichthyosauria), and description of a new species from southwestern Germany. Palaeontologia Electronica, 23(2):a30. https://doi.org/10.26879/937
- Maxwell, E. E., & Vincent, P. (2016). Effects of the early Toarcian Oceanic Anoxic Event on ichthyosaur body size and faunal composition in the Southwest German Basin. Paleobiology, 42(1), 117–126.
- McGowan, C. (1986). A putative ancestor for the swordfish-like ichthyosaur Eurhinosaurus. Nature, 322(6078), 454–456.
- McGowan, C. (1994). The taxonomic status of the Upper Liassic ichthyosaur Eurhinosaurus longirostris. Palaeontology, 37(4), 747–754.
- McGowan, C. (1990). Computed tomography confirms that Eurhinosaurus (Reptilia: Ichthyosauria) does have a tailbend. Canadian Journal of Earth Sciences, 27(11), 1541–1545.
- Vincent, P., Allemand, R., Taylor, P. D., Suan, G., & Maxwell, E. E. (2017). New insights on the systematics, palaeoecology and palaeobiology of a plesiosaurian with soft tissue preservation from the Toarcian of Holzmaden, Germany. The Science of Nature, 104(5-6). doi:10.1007/s00114-017-1472-6
- O'keefe, F. R. (2004). Preliminary description and phylogenetic position of a new plesiosaur (Reptilia: Sauropterygia) from the Toarcian of Holzmaden, Germany. Journal of Paleontology, 78(5), 973–988.
- Vincent, P., Allemand, R., Taylor, P. D., Suan, G., & Maxwell, E. E. (2017). New insights on the systematics, palaeoecology and palaeobiology of a plesiosaurian with soft tissue preservation from the Toarcian of Holzmaden, Germany. The Science of Nature, 104(5-6), 51.
- GROßMANN, F. R. A. N. Z. I. S. K. A. (2007). The taxonomic and phylogenetic position of the Plesiosauroidea from the Lower Jurassic Posidonia Shale of South‐West Germany. Palaeontology, 50(3), 545-564.
- White, T. E. (1940). Holotype of Plesiosaurus longirostris Blake and classification of the plesiosaurs. Journal of Paleontology, 451–467.
- F. Grossmann. 2007. The taxonomic and phylogenetic position of the Plesiosauroidea from the Lower Jurassic Posidonia Shale of south-west Germany. Palaeontology 50(3):545-564
- F. v. Huene. 1923. Ein neuer Plesiosaurier aus dem oberen Lias Württembergs. Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg 79:3–23
- Maisch, M. W., & RŘcklin, M. (2000). Cranial osteology of the sauropterygian Plesiosaurus brachypterygius from the Lower Toarcian of Germany. Palaeontology, 43(1), 29-40.
- Ketchum HF, Benson RBJ. Global interrelationships of Plesiosaur (Reptilia, Sauropterygia) and the pivotal role of taxon sampling in determining the outcome of phylogenetic analyses. Biological Reviews
- Adam S. Smith, Peggy Vincent (2010). "A new genus of pliosaur (Reptilia: Sauropterygia) from the Lower Jurassic of Holzmaden, Germany". Palaeontology. 53 (5): 1049–1063. doi:10.1111/j.1475-4983.2010.00975.x.CS1 maint: uses authors parameter (link)
- Liu, S., Smith, A. S., Gu, Y., Tan, J., Liu, C. K., & Turk, G. (2015). Computer simulations imply forelimb-dominated underwater flight in plesiosaurs. PLoS computational biology, 11(12), e1004605.
- Vincent, P. (2011). A re-examination of Hauffiosaurus zanoni, a pliosauroid from the Toarcian (Early Jurassic) of Germany. Journal of Vertebrate Paleontology, 31(2), 340–351.
- R. L. Carroll, R. L. (1985). A pleurosaur from the Lower Jurassic and the taxonomic position of the Sphenodontida. Palaeontographica Abteilung A, 1985. Volume 189. pp. 1–28..
- Carroll RL, Wild R (1994) Marine members of the Sphenodontia. In: Fraser N, Sues H-D (eds) In the shadow of the dinosaurs—early Mesozoic tetrapods. Cambridge University Press, Cambridge, pp. 70–83
- Klein, N.; Scheyer, T.M. (2017). "Microanatomy and life history in Palaeopleurosaurus (Rhynchocephalia: Pleurosauridae) from the Early Jurassic of Germany". The Science of Nature. 104 (4): 4. doi:10.1007/s00114-016-1427-3. PMID 28005148.
- Kuhn (1961): Eine Schildkröte aus dem Lias epsilon Von Süddeutschland. Jh. Ver. Vaterländ. Naturk. Württemb., 116, S. 285-287; Stuttgart 1961
- Münster, G. (1834): Briefl. Mitteilung. - N.Jb.Min., S. 42 - 43
- MÜNSTER, G.G. ZU. 1834. Mittheilung, an Professor Bronn gerichtet. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1834:42–43.
- THEODORI, L. 1831. Über die Knochen vom Genus Pterodactylus aus der Lias-Formation in der Gegend von Banz. Isis von Oken 1831:276–281.
- Schleich, H. H. (1984). Ein neuer Schildkrötennachweis aus Lias-Sedimenten Deutschlands. Naturwissenschaftliche Zeitschrift für Niederbayern, 30, 56–62.
- Joger, U., Kosma, R., Zellmer, H., & Röhling, H. G. (2018). Saurier im Braunschweiger Land. Die Fund-und Grabungsstellen von Hondelage und Schandelah (Unterjura, Posidonienschiefer) sowie des Langenberg bei Goslar/Oker (Oberjura, Malm)(Exkursion N am 7. April 2018). Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 447–479.
- Joyce, W. G. (2017). A review of the fossil record of basal Mesozoic turtles. Bulletin of the Peabody Museum of Natural History, 58(1), 65–113.
- F. Westphal. 1962. Die Krokodilier des Deutschen und Englischen Oberen Lias [The crocodiles of the German and English Upper Lias]. Palaeontographica Abteilung A 118(1-3):23–118
- Mueller-Töwe, I. J. (2006). Feeding options in Steneosaurus bollensis (Mesoeucrocodylia. Thalattosuchia). Hantkeniana Spec, 5, 46–48.
- Bronn, H. G. (1842). Abhandlungen über die gavialartigen Reptilien der Lias-Formation. E. Schweizerbart.
- Johnson, Michela M.; Young, Mark T.; Brusatte, Stephen L. (2020). "The phylogenetics of Teleosauroidea (Crocodylomorpha, Thalattosuchia) and implications for their ecology and evolution". PeerJ. 8: e9808. doi:10.7717/peerj.9808.
- Michela M Johnson, Mark T Young, Stephen L Brusatte, Emptying the wastebasket: a historical and taxonomic revision of the Jurassic crocodylomorph Steneosaurus, Zoological Journal of the Linnean Society, , zlaa027, https://doi.org/10.1093/zoolinnean/zlaa027
- Kaup, J.J. 1841. Über Mystriosaurus-Reste aus dem Lias-Kalk von Altdorf. In: G. Bronn and J.J. Kaup (eds.), Abhandlungen über die gavial-artigen Reptilien der Lias-Formation. 47 pp. E. Schweizerbart‘sche Verlagshandlung, Stuttgart.
- Winkler, T. C. (1876). Etude sur le genre mystriosaurus et description de deux exemplaires nouveaux de ce genre (Vol. 1).
- Sachs, S.; Johnson, M.M.; Young, M.T.; Abel, P. (2019). "The mystery of Mystriosaurus: Redescribing the poorly known Early Jurassic teleosauroid thalattosuchians Mystriosaurus laurillardi and Steneosaurus brevior" (PDF). Acta Palaeontologica Polonica. 64 (3): 565–579. doi:10.4202/app.00557.2018.
- B E R CK H E ME R , F. 1929. Beitrag zur Kenntnis der Krokodilier des schwa¨bischen oberen Lias.Neues Jahrbuch fu¨r Mineralogie, Geologie und Pala¨ontologie, Abteilung B,64, 1–60.
- Bronn HG. 1841. Über die fossilen Gaviale der Lias-Formation und der Oolithe. Archiv für Naturgeschichte, Berlin 8:77–82.
- Pierce, S. E., & Benton, M. J. (2006). Pelagosaurus typus Bronn, 1841 (Mesoeucrocodylia: Thalattosuchia) from the Upper Lias (Toarcian, Lower Jurassic) of Somerset, England. Journal of Vertebrate Paleontology, 26(3), 621–635.
- Buffetaut, E. (1980). Position systématique et phylogénétique du genre Pelagosaurus Bronn, 1841 (Crocodylia, Mesosuchia), du Toarcien d'Europe. Geobios, 13(5), 783–786.
- Benton MJ, Clark JM. 1988. Archosaur phylogeny and the relationships of the Crocodylia; pp. 295–338 in MJ. Benton (ed.), The phylogeny and classification of the tetrapods, Vol. 1. Amphibians, Reptiles, Birds. Systematic Association Special Volume 35A. Clarendon Press, Oxford.
- Plieninger, F. (1894). "Campylognathus Zittelli. Ein neuer Flugsaurier aus dem Oberen Lias Schwabens", Palaeontographica, 41: 193-222
- Wellnhofer, P. (1974). Campylognathoides liasicus (Quenstedt), an Upper Liassic pterosaur from Holzmaden. The Pittsburgh Specimen.
- Wellnhofer, Peter (1991). "Summary of Lower Jurassic Pterosaurs." The Illustrated Encyclopedia of Pterosaurs. London, UK: Salamander Books Limited. p. 79. ISBN 0-86101-566-5.
- Witton, Mark P. (2013), Pterosaurs: Natural History, Evolution, Anatomy
- Wellnhofer, P. & Vahldiek, B.-W. (1986). "Ein Flugsaurier-Rest aus dem Posidonienschiefer (Unter-Toarcium) von Schandelah bei Braunschweig", Paläontologische Zeitschrift, 60: 329–340
- O'Sullivan, M.; Martill, D.M. (2017). "The taxonomy and systematics of Parapsicephalus purdoni (Reptilia: Pterosauria) from the Lower Jurassic Whitby Mudstone Formation, Whitby, U.K". Historical Biology. 29 (8): 1009–1018. doi:10.1080/08912963.2017.1281919
- Padian, K. (2008). The Early Jurassic pterosaur Dorygnathus banthensis (Theodori, 1830). EARLY JURASSIC PTEROSAUR DORYGNATHUS BANTHENSIS (THEODORI, 1830), (80), 69–107.
- Wiman, C. (1923). über Dorygnathus und andere Flugsaurier. Bulletin of the Geological Institute of Upsala, 19, 23–55.
- Hübner, M., Gischler, E., & Kosma, R. (2020). Rare pterosaur remains tentatively referred to Dorygnathus banthensis (Theodori, 1830) from the Lower Jurassic (Posidonia Shale) of Schandelah (Lower Saxony, Germany). Braunschweiger Naturkundliche Schriften, Heft 16. 2020, 2020(16), 59-82.
- Broili, F. (1939). Ein Dorygnathus mit Hautresten. Verlagd. Bayer. Akad. d. Wiss..
- R. Wild. 1971. Dorygnathus mistelgauensis n. sp., ein neuer Flugsaurier aus dem Lias Epsilon von Mistelgau (Fränkischer Jura). Geologische Blätter für Nordost-Bayern und angrenzende Gebiete 21(4):178–195
- Arthaber, G. (1921). Studien üder Flugsaurier auf Grund der Bearbeitung des Wiener Examplares von Dorygnathus banthensis. Denkschr. Akad. Wien, Bd. XCVII.(with the list of extensive literature on Pterosauria).
- Look, E. R., & Kolbe, H. (1984). Geologie und Bergbau im Braunschweiger Land:(nördliches Harzvorland, Asse, Elm-Lappwald, Peine-Salzgitter, Allertal)-Dokumentation zur Geologischen Wanderkarte 1: 100 000. na.
- Zürlick, F. (1956). Der Teufelsgraben bei Ödhof. Aufschluss, Jg.7, Nr.06/7, S.144-51.
- Wild, R. (1978). "Ein Sauropoden-Rest (Reptilia, Saurischia) aus dem Posidonienschiefer (Lias, Toarcium) von Holzmaden". Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie) (in German). 41: 1–15.
- Nair, J. P., & Salisbury, S. W. (2012). New anatomical information on Rhoetosaurus brownei Longman, 1926, a gravisaurian sauropodomorph dinosaur from the Middle Jurassic of Queensland, Australia. Journal of Vertebrate Palaeontology, 32(2), 369-394
- RUBEN. LARRAMENDI MOLINA-PEREZ (ASIER.). (2020). DINOSAUR FACTS AND FIGURES: The Sauropods and Other Sauropodomorphs. PRINCETON UNIVERSITY PRES.
- MÜNSTER, G. (1836). Letter on various fossils. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, 1836, 580–583.