Boron arsenide
Boron arsenide is a chemical compound involving boron and arsenic, usually with a chemical formula BAs. Other boron arsenide compounds are known, such as the subarsenide B12As2. Chemical synthesis of cubic BAs is very challenging and its single crystal forms usually have defects.
f | |
Identifiers | |
---|---|
3D model (JSmol) |
|
ChemSpider | |
PubChem CID |
|
| |
| |
Properties | |
BAs | |
Molar mass | 85.733 g/mol[1] |
Appearance | Brown cubic crystals[1] |
Density | 5.22 g/cm3[1] |
Melting point | 1,100 °C (2,010 °F; 1,370 K) decomposes[1] |
Insoluble | |
Band gap | 1.82 eV [2] |
Thermal conductivity | 1300 W/(m·K) (300 K) [3] |
Structure[4] | |
Cubic (sphalerite), cF8, No. 216 | |
F43m | |
a = 0.4777 nm | |
Formula units (Z) |
4 |
Related compounds | |
Other anions |
Boron nitride Boron phosphide Boron antimonide |
Other cations |
Aluminium arsenide Gallium arsenide Indium arsenide |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Identifiers | |
---|---|
Properties | |
B12As2 | |
Molar mass | 279.58 g/mol |
Density | 3.56 g/cm3[5] |
Insoluble | |
Band gap | 3.47 eV |
Structure[6] | |
Rhombohedral, hR42, No. 166 | |
R3m | |
a = 0.6149 nm, b = 0.6149 nm, c = 1.1914 nm α = 90°, β = 90°, γ = 120° | |
Formula units (Z) |
6 |
Related compounds | |
Other anions |
Boron suboxide |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
Infobox references | |
Properties
BAs is a cubic (sphalerite) semiconductor in the III-V family with a lattice constant of 0.4777 nm and an indirect band gap has been measured to be 1.82 eV.[7] Cubic BAs is reported to decompose to the subarsenide B12As2 at temperatures above 920 °C.[8]Boron arsenide has a melting point of 2076°C. The thermal conductivity is very high: around 1300 W/(m·K) at 300 K.[9]
The basic physical properties of cubic BAs have been experimentally characterized:[10] Band gap (1.82 eV), optical refractive index (3.29 at 657 nm), elastic modulus (326 GPa), shear modulus, Poisson’s ratio, thermal expansion coefficient (3.85×10-6 /K), and heat capacity. It can be alloyed with gallium arsenide to produce ternary and quaternary semiconductors.[11]
Boron subarsenide
Boron arsenide also occurs as subarsenides, including the icosahedral boride B12As2.It belongs to R3m space group with a rhombohedral structure based on clusters of boron atoms and two-atom As-As chains. It is a wide-bandgap semiconductor (3.47 eV) with the extraordinary ability to “self-heal” radiation damage.[12] This form can be grown on substrates such as silicon carbide.[13]
Applications
Boron arsenide has been proposed as a material for solar cell fabrication,[11][14] although it is not currently used for this purpose.
An ab initio theory has predicted that the thermal conductivity of cubic BAs is remarkably high, over 2,200 W/(m·K) at room temperature, which is comparable to that of diamond and graphite.[15] Subsequent measurements yielded a value of only 190 W/(m·K) due to high density of defects.[16][17] More recent first principles calculations incorporating four-phonon scattering predict a thermal conductivity of 1400 W/(m·K).[18] Later, defect-free boron arsenide crystals have been experimentally realized and measured with an ultrahigh thermal conductivity of 1300 W/(m·K), consistent with theory predictions.[19] Crystals with small density of defects have shown thermal conductivity of 900–1000 W/(m·K).[20][21]
References
- Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 4.53. ISBN 1439855110.
- Kang, Joon Sang; Li, Man; Wu, Huan; Nguyen, Huuduy; Hu, Yongjie (2019). "Basic physical properties of cubic boron arsenide". Applied Physics Letters. 115 (12): 122103. arXiv:1911.11281. Bibcode:2019ApPhL.115l2103K. doi:10.1063/1.5116025. S2CID 204184925.
- Kang, Joon Sang; Li, Man; Wu, Huan; Nguyen, Huuduy; Hu, Yongjie (2018). "Experimental observation of high thermal conductivity in boron arsenide". Science. 361 (6402): 575–578. Bibcode:2018Sci...361..575K. doi:10.1126/science.aat5522. PMID 29976798.
- Perri, J. A; La Placa, S; Post, B (1958). "New group III-group V compounds: BP and BAs". Acta Crystallographica. 11 (4): 310. doi:10.1107/S0365110X58000827.
- Villars, Pierre (ed.) "B12As2 (B6As) Crystal Structure" in Inorganic Solid Phases, Springer, Heidelberg (ed.) SpringerMaterials
- Morosin, B; Aselage, T. L; Feigelson, R. S (2011). "Crystal Structure Refinements of Rhombohedral Symmetry Materials Containing Boron-Rich Icosahedra". MRS Proceedings. 97. doi:10.1557/PROC-97-145.
- Kang, Joon Sang; Li, Man; Wu, Huan; Nguyen, Huuduy; Hu, Yongjie (2019). "Basic physical properties of cubic boron arsenide". Applied Physics Letters. 115 (12): 122103. arXiv:1911.11281. Bibcode:2019ApPhL.115l2103K. doi:10.1063/1.5116025. S2CID 204184925.
- Chu, T. L; Hyslop, A. E (1974). "Preparation and Properties of Boron Arsenide Films". Journal of the Electrochemical Society. 121 (3): 412. Bibcode:1974JElS..121..412C. doi:10.1149/1.2401826.
- Kang, Joon Sang; Li, Man; Wu, Huan; Nguyen, Huuduy; Hu, Yongjie (2018). "Experimental observation of high thermal conductivity in boron arsenide". Science. 361 (6402): 575–578. Bibcode:2018Sci...361..575K. doi:10.1126/science.aat5522. PMID 29976798.
- Kang, Joon Sang; Li, Man; Wu, Huan; Nguyen, Huuduy; Hu, Yongjie (2019). "Basic physical properties of cubic boron arsenide". Applied Physics Letters. 115 (12): 122103. arXiv:1911.11281. Bibcode:2019ApPhL.115l2103K. doi:10.1063/1.5116025. S2CID 204184925.
- Geisz, J. F; Friedman, D. J; Olson, J. M; Kurtz, Sarah R; Reedy, R. C; Swartzlander, A. B; Keyes, B. M; Norman, A. G (2000). "BGaInAs alloys lattice matched to GaAs". Applied Physics Letters. 76 (11): 1443. Bibcode:2000ApPhL..76.1443G. doi:10.1063/1.126058.
- Carrard, M; Emin, D; Zuppiroli, L (1995). "Defect clustering and self-healing of electron-irradiated boron-rich solids". Physical Review B. 51 (17): 11270–11274. Bibcode:1995PhRvB..5111270C. doi:10.1103/PhysRevB.51.11270. PMID 9977852.
- Chen, H.; Wang, G.; Dudley, M.; Xu, Z.; Edgar, J. H.; Batten, T.; Kuball, M.; Zhang, L.; Zhu, Y. (2008). "Single-Crystalline B12As2 on m-plane (1100) 15R-SiC". Applied Physics Letters. 92 (23): 231917. Bibcode:2008ApPhL..92w1917C. doi:10.1063/1.2945635. hdl:2097/2186.
- Boone, J. L. and Vandoren, T. P. (1980) Boron arsenide thin film solar cell development, Final Report, Eagle-Picher Industries, Inc., Miami, OK. abstract.
- An unlikely competitor for diamond as the best thermal conductor, Phys.org news (July 8, 2013)
- Lv, Bing; Lan, Yucheng; Wang, Xiqu; Zhang, Qian; Hu, Yongjie; Jacobson, Allan J; Broido, David; Chen, Gang; Ren, Zhifeng; Chu, Ching-Wu (2015). "Experimental study of the proposed super-thermal-conductor: BAs" (PDF). Applied Physics Letters. 106 (7): 074105. Bibcode:2015ApPhL.106g4105L. doi:10.1063/1.4913441. hdl:1721.1/117852.
- Zheng, Qiang; Polanco, Carlos A.; Du, Mao-Hua; Lindsay, Lucas R.; Chi, Miaofang; Yan, Jiaqiang; Sales, Brian C. (6 September 2018). "Antisite Pairs Suppress the Thermal Conductivity of BAs". Physical Review Letters. 121 (10): 105901. arXiv:1804.02381. Bibcode:2018PhRvL.121j5901Z. doi:10.1103/PhysRevLett.121.105901. PMID 30240242. S2CID 206316624.
- Feng, Tianli; Lindsay, Lucas; Ruan, Xiulin (2017). "Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids". Physical Review B. 96 (16): 161201. Bibcode:2017PhRvB..96p1201F. doi:10.1103/PhysRevB.96.161201.
- Kang, Joon Sang; Li, Man; Wu, Huan; Nguyen, Huuduy; Hu, Yongjie (2018). "Experimental observation of high thermal conductivity in boron arsenide". Science. 361 (6402): 575–578. Bibcode:2018Sci...361..575K. doi:10.1126/science.aat5522. PMID 29976798.
- Li, Sheng; Zheng, Qiye; Lv, Yinchuan; Liu, Xiaoyuan; Wang, Xiqu; Huang, Pinshane Y.; Cahill, David G.; Lv, Bing (2018). "High thermal conductivity in cubic boron arsenide crystals". Science. 361 (6402): 579–581. Bibcode:2018Sci...361..579L. doi:10.1126/science.aat8982. PMID 29976796.
- Tian, Fei; Song, Bai; Chen, Xi; Ravichandran, Navaneetha K; Lv, Yinchuan; Chen, Ke; Sullivan, Sean; Kim, Jaehyun; Zhou, Yuanyuan; Liu, Te-Huan; Goni, Miguel; Ding, Zhiwei; Sun, Jingying; Gamage, Geethal Amila Gamage Udalamatta; Sun, Haoran; Ziyaee, Hamidreza; Huyan, Shuyuan; Deng, Liangzi; Zhou, Jianshi; Schmidt, Aaron J; Chen, Shuo; Chu, Ching-Wu; Huang, Pinshane Y; Broido, David; Shi, Li; Chen, Gang; Ren, Zhifeng (2018). "Unusual high thermal conductivity in boron arsenide bulk crystals". Science. 361 (6402): 582–585. Bibcode:2018Sci...361..582T. doi:10.1126/science.aat7932. PMID 29976797.
External links
- Matweb data
- King, R. B. (1999). Boron Chemistry at the Millennium. New York: Elsevier. ISBN 0-444-72006-5.
- Ownby, P. D. (1975). "Ordered Boron Arsenide". Journal of the American Ceramic Society. 58 (7–8): 359–360. doi:10.1111/j.1151-2916.1975.tb11514.x.