Hemiperfect number

In number theory, a hemiperfect number is a positive integer with a half-integral abundancy index.

For a given odd number k, a number n is called k-hemiperfect if and only if the sum of all positive divisors of n (the divisor function, σ(n)) is equal to k/2 × n.

Smallest k-hemiperfect numbers

The following table gives an overview of the smallest k-hemiperfect numbers for k  17 (sequence A088912 in the OEIS):

kSmallest k-hemiperfect number Number of digits
32 1
524 2
74320 4
98910720 7
1117116004505600 14
13170974031122008628879954060917200710847692800 45
1512749472205565550032020636281352368036406720997031277595140988449695952806020854579200000[1] 89
1727172904004644864174776390325441204588387876949911859015099963347683477337589882757168182488651338324482275518065870009252589097916253652597707421065171952334010184222064839170719744000000000[1] 191

For example, 24 is 5-hemiperfect because the sum of the divisors of 24 is

1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = 60 = 5/2 × 24.

See also

References

  1. "Number Theory". Numericana.com. Retrieved 2012-08-21.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.