Isotopes of chromium
Naturally occurring chromium (24Cr) is composed of four stable isotopes; 50Cr, 52Cr, 53Cr, and 54Cr with 52Cr being the most abundant (83.789% natural abundance). 50Cr is suspected of decaying by β+β+ to 50Ti with a half-life of (more than) 1.8×1017 years. Twenty-two radioisotopes, all of which are entirely synthetic, have been characterized with the most stable being 51Cr with a half-life of 27.7 days. All of the remaining radioactive isotopes have half-lives that are less than 24 hours and the majority of these have half-lives that are less than 1 minute, the least stable being 66Cr with a half-life of 10 milliseconds. This element also has 2 meta states, 45mCr, the more stable one, and 59mCr, the least stable isotope or isomer.
| |||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar, standard(Cr) |
| ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53Cr is the radiogenic decay product of 53Mn. Chromium isotopic contents are typically combined with manganese isotopic contents and have found application in isotope geology. Mn-Cr isotope ratios reinforce the evidence from 26Al and 107Pd for the early history of the solar system. Variations in 53Cr/52Cr and Mn/Cr ratios from several meteorites indicate an initial 53Mn/55Mn ratio that suggests Mn-Cr isotope systematics must result from in-situ decay of 53Mn in differentiated planetary bodies. Hence 53Cr provides additional evidence for nucleosynthetic processes immediately before coalescence of the solar system. The same isotope is preferentially involved in certain leaching reactions, thereby allowing its abundance in seawater sediments to be used as a proxy for atmospheric oxygen concentrations.[2]
The isotopes of chromium range from 42Cr to 67Cr. The primary decay mode before the most abundant stable isotope, 52Cr, is electron capture and the primary mode after is beta decay.
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life [n 4] |
Decay mode [n 5] |
Daughter isotope [n 6] |
Spin and parity [n 7][n 4] |
Natural abundance (mole fraction) | |
---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 4] | Normal proportion | Range of variation | |||||||
42Cr | 24 | 18 | 42.00643(32)# | 14(3) ms [13(+4-2) ms] |
β+ (>99.9%) | 42V | 0+ | ||
2p (<.1%) | 40Ti | ||||||||
43Cr | 24 | 19 | 42.99771(24)# | 21.6(7) ms | β+ (71%) | 43V | (3/2+) | ||
β+, p (23%) | 42Ti | ||||||||
β+, 2p (6%) | 41Sc | ||||||||
β+, α (<.1%) | 39Sc | ||||||||
44Cr | 24 | 20 | 43.98555(5)# | 54(4) ms [53(+4-3) ms] |
β+ (93%) | 44V | 0+ | ||
β+, p (7%) | 43Ti | ||||||||
45Cr | 24 | 21 | 44.97964(54) | 50(6) ms | β+ (73%) | 45V | 7/2−# | ||
β+, p (27%) | 44Ti | ||||||||
45mCr | 50(100)# keV | 1# ms | IT | 45Cr | 3/2+# | ||||
β+ | 45V | ||||||||
46Cr | 24 | 22 | 45.968359(21) | 0.26(6) s | β+ | 46V | 0+ | ||
47Cr | 24 | 23 | 46.962900(15) | 500(15) ms | β+ | 47V | 3/2− | ||
48Cr | 24 | 24 | 47.954032(8) | 21.56(3) h | β+ | 48V | 0+ | ||
49Cr | 24 | 25 | 48.9513357(26) | 42.3(1) min | β+ | 49V | 5/2− | ||
50Cr | 24 | 26 | 49.9460442(11) | Observationally Stable[n 8] | 0+ | 0.04345(13) | 0.04294–0.04345 | ||
51Cr | 24 | 27 | 50.9447674(11) | 27.7025(24) d | EC | 51V | 7/2− | ||
52Cr | 24 | 28 | 51.9405075(8) | Stable | 0+ | 0.83789(18) | 0.83762–0.83790 | ||
53Cr | 24 | 29 | 52.9406494(8) | Stable | 3/2− | 0.09501(17) | 0.09501–0.09553 | ||
54Cr | 24 | 30 | 53.9388804(8) | Stable | 0+ | 0.02365(7) | 0.02365–0.02391 | ||
55Cr | 24 | 31 | 54.9408397(8) | 3.497(3) min | β− | 55Mn | 3/2− | ||
56Cr | 24 | 32 | 55.9406531(20) | 5.94(10) min | β− | 56Mn | 0+ | ||
57Cr | 24 | 33 | 56.943613(2) | 21.1(10) s | β− | 57Mn | (3/2−) | ||
58Cr | 24 | 34 | 57.94435(22) | 7.0(3) s | β− | 58Mn | 0+ | ||
59Cr | 24 | 35 | 58.94859(26) | 460(50) ms | β− | 59Mn | 5/2−# | ||
59mCr | 503.0(17) keV | 96(20) µs | (9/2+) | ||||||
60Cr | 24 | 36 | 59.95008(23) | 560(60) ms | β− | 60Mn | 0+ | ||
61Cr | 24 | 37 | 60.95472(27) | 261(15) ms | β− (>99.9%) | 61Mn | 5/2−# | ||
β−, n (<.1%) | 60Mn | ||||||||
62Cr | 24 | 38 | 61.95661(36) | 199(9) ms | β− (>99.9%) | 62Mn | 0+ | ||
β−, n | 61Mn | ||||||||
63Cr | 24 | 39 | 62.96186(32)# | 129(2) ms | β− | 63Mn | (1/2−)# | ||
β−, n | 62Mn | ||||||||
64Cr | 24 | 40 | 63.96441(43)# | 43(1) ms | β− | 64Mn | 0+ | ||
65Cr | 24 | 41 | 64.97016(54)# | 27(3) ms | β− | 65Mn | (1/2−)# | ||
66Cr | 24 | 42 | 65.97338(64)# | 10(6) ms | β− | 66Mn | 0+ | ||
67Cr | 24 | 43 | 66.97955(75)# | 10# ms [>300 ns] |
β− | 67Mn | 1/2−# |
- mCr – Excited nuclear isomer.
- ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
-
Modes of decay:
EC: Electron capture IT: Isomeric transition p: Proton emission - Bold symbol as daughter – Daughter product is stable.
- ( ) spin value – Indicates spin with weak assignment arguments.
- Suspected of decaying by double electron capture to 50Ti with a half-life of no less than 1.3×1018 a
Chromium-51
Radioisotopic tracer. Used in medicine.
References
- Meija, Juris; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
- R. Frei; C. Gaucher; S. W. Poulton; D. E. Canfield (2009). "Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes". Nature. 461 (7261): 250–3. Bibcode:2009Natur.461..250F. doi:10.1038/nature08266. PMID 19741707. S2CID 4373201.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051. Lay summary.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.