Transition metal chloride complex

In chemistry, a transition metal chloride complex is a coordination complex that consists of a transition metal coordinated to one or more chloride ligand. The class of complexes is extensive.[1]

Octahedral molecular geometry is a common structural motif for homoleptic metal chloride complexes. Examples include MCl6 (M = Mo, W), [MCl6] (M = Nb, Ta, Mo, W, Re), [MCl6]2- (M = Ti Zr, Hf, Mo, Mn, Re, Ir, Pd, Pt), and [MCl6]3- (M = Ru Os, Rh, Ir).

Bonding

Halides are X-type ligands in coordination chemistry. They are both σ- and π-donors. Chloride is commonly found as both a terminal ligand and a bridging ligand. The halide ligands are weak field ligands. Due to a smaller crystal field splitting energy, the homoleptic halide complexes of the first transition series are all high spin. Only [CrCl6]3− is exchange inert.

Homoleptic metal halide complexes are known with several stoichiometries, but the main ones are the hexahalometallates and the tetrahalometallates. The hexahalides adopt octahedral coordination geometry, whereas the tetrahalides are usually tetrahedral. Square planar tetrahalides are known for Pd(II), Pt(II), and Au(III). Examples with 2- and 3-coordination are common for Au(I), Cu(I), and Ag(I).

Due to the presence of filled pπ orbitals, halide ligands on transition metals are able to reinforce π-backbonding onto a π-acid. They are also known to labilize cis-ligands.[2]

Homoleptic complexes

Homoleptic complexes (complexes with only chloride ligands) are often common reagents. Almost all examples are anions.

1st row

1st Transition Series
Complexcolourelectron config.structuregeometrycomments
TiCl4 colourless (t2g)0 tetrahedral
[Ti2Cl10]2− colourless d0d0 bioctahedral
[Ti2Cl9] white/colourless d0d0 face-sharing bioctahedron Ti-Cl(terminal) = 2.23 Å, 2.45 (terminal)
(N(PCl3)2)+ salt)[3]
[Ti2Cl9]3- orange (t2g)1(t2g)1 face-sharing bioctahedron Ti-Ti =3.22 Å
Ti-C1(terminal) = 2.32-2.35 Å (terminal),
Ti-Cl(bridge) = 2.42-2.55 Å
((NEt4+)3)3 salt)[4]
[Ti3Cl12]3- green (t2g)1(t2g)1(t2g)1 face-sharing trioctahedron Ti-Ti = 3.19, 3.10 Å (terminal)
Ti-C1(terminal) = 2.36 Å (terminal),
Ti-Cl(bridge) = 2.50 Å
((PPh4+)3)3 salt)[5]
[TiCl6]2− yellow d0 octahedral PPh4+ salt
Ti-Cl = 2.33 Å[6]
VCl4 red (t2g)1 tetrahedral V1−Cl = 2.29 Å
VCl5 violet (t2g)0 edge-shared bioctahedron V1−Cl(bridging) = 2.48 Å
V1−Cl(terminal) = 2.16-2.21 Å[7]
[VCl6]2- red (t2g)1 octahedral V1−Cl = 2.29 Å[8]
[CrCl6]3− ?? (t2g)3 octahedal[9]
[MnCl4]2−[10] pale pink to while (eg)2(t2g)3 tetrahedral Mn-Cl bond length = 2.3731-2.3830 Å[11]
[Mn2Cl6]2− yellow-green (eg)2(t2g)3 bitetrahedral Mn-Cl(terminal) bond length = 2.24 Å
Mn-Cl(terminal) bond length = 2.39 Å[12]
(PPN+)2 salt
[MnCl6]2− dark red (t2g)3(eg)1 octahedral Mn-Cl distance = 2.28 Å
K+ salt[13])
salt is isostructural with K2PtCl6
[Mn3Cl12]6− pink (t2g)3(eg)2 cofacial trioctahedron Mn-Cl distance = --- Å
[(C(NH2)3]+6 salt[14]
[FeCl4]2−[10] cream
((Et4N+)2 salt)[10]
(eg)3(t2g)3 tetrahedral
[FeCl4] (eg)2(t2g)3 tetrahedral Fe-Cl bond length = 2.19 Å[15]
[Fe2Cl6]2− pale yellow (eg)2(t2g)3 bitetrahedral Fe-Cl(terminal) bond length = 2.24 Å
Fe-Cl(terminal) bond length = 2.39 Å[12]
(PPN+)2 salt
[CoCl4]2−[10] blue[10] (eg)4(t2g)3 tetrahedral
[Co2Cl6]2− blue[12] (eg)4(t2g)3 bitetrahedral Mn-Cl(terminal) bond length = 2.24 Å
Co-Cl(terminal) bond length = 2.35 Å[12]
(PPN+)2 salt
[NiCl4]2−[10] blue[10] (eg)4(t2g)4 tetrahedral Ni-Cl bond length = 2.28 Å
(Et4N+)2 salt[16]
[Ni3Cl12]6− orange[17] (t2g)6(eg)2 confacial trioctahedral ((Me2NH2+)2)8 salt
double salt with two Cl
Ni-Cl bond length = 2.36-2.38 Å[17]
[CuCl4]2−[10] orange[18]
yellow (flattened tetrahedral)[19]
green (square planar)[20]
(t2g)6(eg)3 flattened tetrahedral
or square planar[21][22]
Cu-Cl bond length = 2.24 Å
[Cu2Cl6]2− red [(t2g)6(eg)3]2 edge-shared bis(square planar)[23] Cu-Cl(terminal) = 2.24 Å
Cu-Cl(bridging) = 2.31 Å
[ZnCl4]2− white/colorless d10 tetrahedral

2nd row

Some homoleptic complexes of the second row transition metals feature metal-metal bonds.

2nd Transition Series
Complexcolourelectron config.structuregeometrycomments
[ZrCl6]2− yellow (t2g)0 octahedral Zr-Cl distance = 2.460 Å
(Me4N+)2 salt[25]
[Zr2Cl10]2− colorless (t2g)0 edge-shared bioctahedral Zr-Cl = 2.36 Å (terminal), 2.43 Å (bridging)
N(PCl3)2)+ salt[3]
[NbCl5] yellow d0) edge-shared bioctahedral [Nb2Cl10]
[NbCl6] yellow t2g0 octahedral Nb-Cl = 2.34 Å
N(PCl3)2)+ salt[3]
[Nb6Cl18]2− black (d2)4(d3)2 (14 cluster electrons) cluster Nb---Nb bonding Nb-Cl = 2.92 Å
(K+)2 salt[26]
MoCl6 black d0 octahedron Mo−Cl = 2.28 -2.31 Å[7]
[MoCl6]2− yellow (t2g)2 octahedron Mo−Cl = 2.37, 2.38, 2.27 Å[27]
[MoCl6]3− pink (t2g)3 octahedral
[Mo2Cl8]4− purple[28] 2(d4) Mo-Mo quadruple bond
[Mo2Cl9]3− 2(d3) face-shared bioctahedral Mo-Mo (triple) bond length = 2.65 Å
Mo-Cl (terminal) bond length = 2.38 Å
Mo-Cl (bridging) bond length = 2.49 Å[29][30]
[Mo2Cl10]2− (d1)2 edge-sharing bioctahedra[31]
[Mo5Cl13]2− brown[28] d2d2d2d2d3 incomplete octahedron[32]
[Mo6Cl14]2− yellow d4 octahedral cluster (4-HOPyH+)2 salt[33]
[TcCl6]2− yellow (t2g)3 octahedron Tc-Cl = 2.35 Å for As(C6H5)4+ salt[34]
[Tc2Cl8]2− green (t2g)4 Tc-Tc quadruple bond Tc-Tc = 2.16, Tc-Cl = 2.34 Å for NBu4+ salt[35]
[RuCl6]2− brown (t2g)4 octahedral (EtPPh3+)2 salt[36]
[Ru3Cl12]4− green (d5)2(d6) cofacial trioctahedral Ru-Ru bond lengths = 2.86 Å
Ru-Cl bond lengths = 2.37-2.39 Å
(Et4N+)2(H7O3+)2 salt[37]
[RhCl6]3− red (t2g)6 octahedral H2N+(CH2CH2NH3+)2 salt)[38]
[Rh2Cl9]3− red-brown (t2g)6 octahedral Rh-Cl(terminal) = 2.30 Å, Rh-Cl(terminal) = 2.40 Å
((Me3CH2Ph)+)3 salt)[29]
[PdCl4]2− brown d8 square planar
[Pd2Cl6]2−[39] red ((Et4N+)2 salt) d8 square planar
[Pd3Cl8]2−[40] orange brown ((Bu4N+)2 salt) d8 square planar
[PdCl6]2− brown d6 octahedral Pd(IV)
[Pd6Cl12] yellow-brown d8 square planar[41]
[AgCl2] white/colorless d10 linear salt of [K(2.2.2-crypt)]+[42]
[CdCl4]2− white/colorless d10 tetrahedral Et4N+ salt, Cd-Cl distance is 2.43 Å[24]
[Cd2Cl6]2− white/colorless d10 edge-shared bitetrahedron (C6N3(4-C5H4N)33+ salt[43]
[Cd3Cl12]6− white/colorless d10 octahedral (central Cd)
pentacoordinate (terminal Cd's)
cofactial trioctahedral
(C6N3(4-C5H4N)33+ salt[43]
(3,8-Diammonium-6-phenylphenanthridine3+)2[44]
[Cd6Cl19]7− white/colorless d10 octahedron of octahedra 4,4'-(C6H3(2-Et)NH3+)2 salt[45]

3rd row

3rd Transition Series
Complexcolourelectron config.structuregeometrycomments
[HfCl6]2− white (t2g)0 octahedral Hf-Cl distance = 2.448 A
((Me4N+)2 salt)[25]
[Hf2Cl10]2− colorless/white (t2g)0 edge-shared bioctahedral[46]
[Hf2Cl9] colorless/white (t2g)0 face-shared bioctahedral[47]
[TaCl5] white (t2g)0 edge-shared bioctahedral
[TaCl6] white/colourless (t2g)0 octahedral Ta-Cl = 2.34 Å
(N(PCl3)2)+ salt)[3]
[Ta6Cl18]2- green d0 octahedral Ta-Ta = 2.34 Å
(H+2 salt hexahydrate[48]
WCl6 blue (t2g)0 octahedral 2.24–2.26 Å[49]
[WCl6]2− (t2g)2 octahedral W-Cl distances range from 2.34 to 2.37 Å
(PPh4+ salt)[50]
[WCl6] (t2g)1 octahedral W-Cl distance = 2.32 Å
(Et4N+ salt)[51]
[W2Cl9]2− d3d2 face-sharing bioctahedral W-W distance = 2.54 Å
W-Cl(terminal) = 2.36 Å, W-Cl(bridge) = 2.45 Å
((PPN+)2 salt)[52]
[W2Cl9]3− d3d3 octahedral W-Cl distance = 2.32 Å
(Et4N+ salt)[52]
[W3Cl13]3− d3,d3,d4 [W33-Cl)(μ-Cl)3Cl9]3- W-W distances = 2.84 Å[53]
[W3Cl13]2− d3,d4,d4 [W33-Cl)(μ-Cl)3Cl9]2-[53] W-W distances = 2.78 Å[53]
[W6Cl14]2- yellow[54] (d4)6 see Mo6Cl12
[ReCl6] red-brown (t2g)6 octahedral Re-Cl distance = 2.24-2.31 Å
(PPh4+ salt)[55]
[ReCl6] (t2g)1 octahedral Re-Cl distance = 226.3(6) Å[7]
[ReCl6]2− green (t2g)5 octahedral Re-Cl distance = 2.35-2.38 Å
((PPN+)2 salt)[56]
[Re2Cl9]2− (t2g)5 face-sharing bioctahedral Re-Re distance = 2.48 Å
Re-Cl distances = 2.42 Å (bridge), 2.33 Å (terminal)
((Et4N+)2 salt)[57]
[Re2Cl9] (t2g)5 face-sharing bioctahedral Re-Re distance = 2.70 Å
Re-Cl distances = 2.41 (bridge), 2.28 Å (terminal)
(Bu4N+ salt)[57]
[OsCl6] (t2g)5 octahedral Os-Cl distance is 2.28 Å
[OsCl6]2− (t2g)4 octahedral[58] Os-Cl distance 2.33 Å
[Os2Cl10]2− (t2g)5 octahedral (Et4N+)2 salt [59] salt
[IrCl6]3− red (t2g)6 octahedral Ir-Cl = 2.36 Å[60]
[IrCl6]2− brown (t2g)5 octahedral Ir-Cl = 2.33 Å[61]
[Ir2Cl9]3− brown (t2g)6 bi-octahedral[62]
[PtCl4]2− pink d8 square planar
[PtCl6]2− yellow d6 octahedral Pt-Cl distance = 2.32 Å
Et4N+ salt, ((Me4N+)2 salt)[25]
[Pt2Cl9] red (Bu4N+ salt) (t2g)6 octahedral Pt-Clt and Pt-Clbridge = 2.25, 2.38 Å[62]
[Pt6Cl12] yellow-brown d8 square planar Pt-Cl = 2.31[63]
[AuCl2] white/colorless d10 linear Au-Cl distances of 2.28 Å
NEt4+ salt[64]
[AuCl4] yellow d8 square planar Au-Cl distances of 2.26 Å
NBu4+ salt[65]
[HgCl4]2− white/colorless d10 tetrahedral Hg-Cl distance is 2.46 Å[24]
Et4N+ salt
[Hg2Cl6]2− white/colorless d10 edge-shared bitetrahedral Hg-Cl distance is 2.46 Å[66]
Bu4N+ salt

Heteroleptic complexes

Heteroleptic complexes containing chloride are numerous. Most hydrated metal halides are members of this class. Hexamminecobalt(III) chloride and Cisplatin (cis-Pt(NH3)2Cl2) are prominent examples of metal-ammine-chlorides.

Hydrates

"Nickel dichloride hexahydrate" consists of the chloride complex trans-[NiCl2(H2O)4 plus water of crystallization.

As indicated in the table below, many hydrates of metal chlorides are molecular complexes.[67][68] These compounds are often important commercial sources of transition metal chlorides. Several hydrated metal chlorides are not molecular and thus are not included in this tabulation. For example the dihydrates of manganese(II) chloride, nickel(II) chloride, copper(II) chloride, iron(II) chloride, and cobalt(II) chloride are coordination polymers.

Formula of
hydrated metal halides
Coordination
sphere of the metal
TiCl3(H2O)6trans-[TiCl2(H2O)4]+[69]
VCl3(H2O)6trans-[VCl2(H2O)4]+[69]
CrCl3(H2O)6trans-[CrCl2(H2O)4]+
CrCl3(H2O)6[CrCl(H2O)5]2+
CrCl2(H2O)4trans-[CrCl2(H2O)4]
CrCl3(H2O)6[Cr(H2O)6]3+[70]
MnCl2(H2O)6trans-[MnCl2(H2O)4]
MnCl2(H2O)4cis-[MnCl2(H2O)4][71]
FeCl2(H2O)6trans-[FeCl2(H2O)4]
FeCl2(H2O)4trans-[FeCl2(H2O)4]
FeCl3(H2O)6one of four hydrates of ferric chloride,[72]
FeCl3(H2O)2.5cis-[FeCl2(H2O)4]+[73]
CoCl2(H2O)6trans-[CoCl2(H2O)4]
CoCl2(H2O)4cis-[CoCl2(H2O)4]
NiCl2(H2O)6trans-[NiCl2(H2O)4]
NiCl2(H2O)4cis-[NiCl2(H2O)4]

Ether complexes

Metal chlorides form adducts with ethers, especially tetrahydrofuran[74] and chelating ethers. These compounds are often important reagents because they are soluble and anhydrous.

Formula of
Metal-Chloride-eher Complexes
Coordination
sphere of the metal
color
TiCl4(thf)2TiO2Cl4yellow [75]
TiCl3(thf)3TiO3Cl3blue
[TiCl3(thf)2]2TiO2Cl4green[76]
ZrCl4(thf)2ZrO2Cl4white
HfCl4(thf)2HfO2Cl4white
VCl3(thf)3VO3Cl3pink
[VCl3(thf)2]2VO2Cl4red[77]
NbCl4(thf)2NbO2Cl4yellow
Ta3Cl9(thf)4TaO2Cl4 and TaOCl5[78]
CrCl3(thf)3CrO3Cl3pink
MoCl4(thf)2MoO2Cl4pink[79]
MoCl3(thf)3MoO3Cl3red[79]
MnCl3(thf)3MnO3Cl3brown-purple[80]
TcCl4(thf)2TcO2Cl4yellow[81]
ReCl4(thf)2ReO2Cl4green[82]
Fe4Cl8(thf)6FeO2Cl3, FeO2Cl4brown[83]
Co4Cl8(thf)6CoO2Cl3, CoO2Cl4blue[84]
NiCl2(dimethoxyethane)2NiCl2O4yellow[85]
[Cu2Cl4(thf)3]nCuO2Cl4, CuOCl4orange[86]

References

  1. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  2. J. F. Hartwig (2009). "4: Covalent (X-Type) Ligands Bound Through Metal-Heteroatom Bonds". Organotransition Metal Chemistry. ISBN 978-1-891389-53-5.
  3. Rivard, Eric; McWilliams, Andrew R.; Lough, Alan J.; Manners, Ian (2002). "Bis(trichlorophosphine)iminium salts, [Cl3P=N=PCl3]+, with transition metal halide counter-ions". Acta Crystallographica Section C. 58 (9): i114–i118. doi:10.1107/S0108270102012532. PMID 12205363.
  4. Castro, Stephanie L.; Streib, William E.; Huffmann, John C.; Christou, George (1996). "A mixed-valence (TiIIITiIV) Carboxylate Complex: Crystal Structures and Properties of [Ti2OCl3(O2CPh)2(THF)3] and [NEt4]3[Ti2Cl9]". Chemical Communications (18): 2177. doi:10.1039/CC9960002177.
  5. Chen, Linfeng; Cotton, F. Albert (1998). "Synthesis, Reactivity, and X-ray Structures of Face-Sharing Ti(III) Complexes; the New Trinuclear Ion, [Ti3Cl12]3−". Polyhedron. 17 (21): 3727–3734. doi:10.1016/S0277-5387(98)00171-5.
  6. Chen, Linfeng; Cotton, F. A. (1998). "Partial Hydrolysis of Ti(III) and Ti(IV) Chlorides in the Presence of [PPh4]Cl". Inorganica Chimica Acta. 267 (2): 271–279. doi:10.1016/S0020-1693(97)05766-6.
  7. Tamadon, Farhad; Seppelt, K. (2012). "The Elusive Halides VCl5, MoCl6, and ReCl6". Angewandte Chemie International Edition. 52 (2): 767–769. doi:10.1002/anie.201207552. PMID 23172658.CS1 maint: uses authors parameter (link)
  8. Hayton, Trevor W.; Patrick, Brian O.; Legzdins, Peter (2004). "New Details Concerning the Reactions of Nitric Oxide with Vanadium Tetrachloride". Inorganic Chemistry. 43 (22): 7227–7233. doi:10.1021/ic0491534. PMID 15500362.
  9. O. S. Filipenko, D. D. Makitova, O. N. Krasochka, V. I. Ponomarev, L. O. Atovmyan (1987). Koord. Khim. 13: 669. Missing or empty |title= (help)CS1 maint: multiple names: authors list (link)
  10. Gill, N. S.; Taylor, F. B. (1967). "Tetrahalo Complexes of Dipositive Metals in the First Transition Series". Inorganic Syntheses. 9: 136–142. doi:10.1002/9780470132401.ch37. ISBN 9780470132401.
  11. Chang, Jui-Cheng; Ho, Wen-Yueh; Sun, I-Wen; Chou, Yu-Kai; Hsieh, Hsin-Hsiu; Wu, Tzi-Yi (2011). "Synthesis and Properties of New Tetrachlorocobaltate (II) and Tetrachloromanganate (II) Anion Salts with Dicationic Counterions". Polyhedron. 30 (3): 497–507. doi:10.1016/j.poly.2010.11.009.
  12. Sun, Jui-Sui; Zhao, Hanhua; Ouyang, Xiang; Clérac, Rodolphe; Smith, Jennifer A.; Clemente-Juan, Juan M.; Gómez-Garcia, Carlos; Coronado, Eugenio; Dunbar, Kim R. (1999). "Structures, Magnetic Properties, and Reactivity Studies of Salts Containing the Dinuclear Anion [M2Cl6]2-(M = Mn, Fe, Co)". Inorganic Chemistry. 38 (25): 5841–5855. doi:10.1021/ic990525w.
  13. Moews, P. C. (1966). "The Crystal Structure, Visible, and Ultraviolet Spectra of Potassium Hexachloromanganate(IV)". Inorganic Chemistry. 5: 5–8. doi:10.1021/ic50035a002.
  14. Sen, Abhijit; Swain, Diptikanta; Guru Row, Tayur N.; Sundaresan, A. (2019). "Unprecedented 30 K Hysteresis Across Switchable Dielectric and Magnetic Properties in a Bright Luminescent Organic–Inorganic Halide (CH6N3)2MnCl4" (PDF). Journal of Materials Chemistry C. 7 (16): 4838–4845. doi:10.1039/C9TC00663J.
  15. Lutz, Martin; Huang, Yuxing; Moret, Marc-Etienne; Klein Gebbink, Robertus J. M. (2014). "Phase Transitions and Twinned Low-Temperature Structures of Tetraethylammonium Tetrachloridoferrate(III)". Acta Crystallographica Section C. 70 (5): 470–476. doi:10.1107/S2053229614007955. hdl:1874/307900. PMID 24816016.
  16. Stucky, G. D.; Folkers, J. B.; Kistenmacher, T. J. (1967). "The Crystal and Molecular Structure of Tetraethylammonium Tetrachloronickelate(II)". Acta Crystallographica. 23 (6): 1064–1070. doi:10.1107/S0365110X67004268.
  17. Gerdes, Allison; Bond, Marcus R. (2009). "Octakis(dimethylammonium) Hexa-μ2-chlorido-Hexachloridotrinickelate(II) Dichloride: A Linear Trinickel Complex with Asymmetric Bridging". Acta Crystallographica Section C. 65 (10): m398–m400. doi:10.1107/S0108270109036853. PMID 19805875.
  18. Mahoui, A.; Lapasset, J.; Moret, J.; Saint Grégoire, P. (1996). "Tetraethylammonium Tetramethylammonium Tetrachlorocuprate(II), [(C2H5)4N][(CH3)4N][CuCl4]". Acta Crystallographica Section C. 52 (11): 2674–2676. doi:10.1107/S0108270196009031.
  19. Guillermo Mínguez Espallargas, Lee Brammer, Jacco van de Streek, Kenneth Shankland, Alastair J. Florence, and Harry Adams (2006). "Reversible Extrusion and Uptake of HCl Molecules by Crystalline Solids Involving Coordination Bond Cleavage and Formation". J. Am. Chem. Soc. 128: 9584–9585. doi:10.1021/ja0625733.CS1 maint: uses authors parameter (link)
  20. Kelley, A.; Nalla, S.; Bond, M. R. (2015). "The Square-Planar to Flattened-Tetrahedral CuX42- (X = Cl, Br) Structural Phase Transition in 1,2,6-Trimethylpyridinium salts". Acta Crystallographica Section B. 71: 48–60. doi:10.1107/S205252061402664X.
  21. Halcrow, Malcolm A. (2013). "Jahn–Teller Distortions in Transition Metal Compounds, and Their Importance in Functional Molecular and Inorganic Materials". Chem. Soc. Rev. 42: 1784–1795. doi:10.1039/C2CS35253B.
  22. Reinen, Dirk (2014). "A New Approach to Treating Vibronic Coupling Under Stress—The Strain-Induced Enhancement or Suppression of Jahn–Teller Distortions in Tetrahedral CuIICl4-Complexes, and the Transition to Octahedral Structures". Coord. Chem. Rev. 272: 30–47. doi:10.1016/j.ccr.2014.03.004.
  23. Willett, Roger D.; Butcher, Robert E.; Landee, Christopher P.; Twamley, Brendan (2006). "Two Halide Exchange in Copper(II) Halide Dimers: (4,4′-Bipyridinium)Cu2Cl6−x BRX". Polyhedron. 25 (10): 2093–2100. doi:10.1016/j.poly.2006.01.005.
  24. Mahoui, A.; Lapasset, J.; Moret, J.; Saint Grégoire, P. (1996). "Bis(tetraethylammonium) Tetrachlorometallates, [(C2H5)4N]2[MCl4], where M = Hg, Cd, Zn". Acta Crystallographica Section C. 52 (11): 2671–2674. doi:10.1107/S010827019600666X.
  25. Autillo, Matthieu; Wilson, Richard E. (2017). "Phase Transitions in Tetramethylammonium Hexachlorometalate Compounds (TMA)2MCl6 (M = U, Np, Pt, Sn, Hf, Zr)". European Journal of Inorganic Chemistry. 2017 (41): 4834–4839. doi:10.1002/ejic.201700764.
  26. Simon, Arndt; von Schnering, Hans-Georg; Schäfer, Harald (1968). "Beiträge zur Chemie der Elemente Niob und Tantal. LXIX K4Nb6Cl18 Darstellung, Eigenschaften und Struktur". Zeitschrift für anorganische und allgemeine Chemie. 361 (5–6): 235–248. doi:10.1002/zaac.19683610503.
  27. Rabe, Susanne; Bubenheim, Wilfried; Müller, Ulrich (2004). "Crystal Structures of Acetonitrile Solvates of Bis(tetraphenylphosphonium) Tetrachlorooxovanadate(IV), Hexachlorostannate(IV) and -Molybdate(IV), [P(C6H5)4]2[VOCl4] · 4CH3CN, [P(C6H5)4]2[MCl6]·4CH3CN (M = Sn, Mo)". Zeitschrift für Kristallographie - New Crystal Structures. 219 (2): 101–105. doi:10.1524/ncrs.2004.219.2.101. S2CID 201122319.
  28. Brignole, A. B.; Cotton, F. A.; Dori, Z. (1972). "Rhenium and Molybdenum Compounds Containing Quadruple Bonds". Inorg. Synth. 13: 81–89. doi:10.1002/9780470132449.ch15.
  29. Cotton, F.A; Ucko, David A. (1972). "The Structure of Trimethylphenylammonium Nonachlorodirhodate(III) and a Survey of Metal-Metal Interactions in Confacial Bioctahedra". Inorganica Chimica Acta. 6: 161–172. doi:10.1016/S0020-1693(00)91778-X.
  30. R. A. D. Wentworth, R. Saillant, R. B. Jackson, W. E. Streib, K. Folting (1971). "Crystal structures of Cs3Cr2Br9, Cs3Mo2Cl9, and Cs3Mo2Br9". Inorg. Chem. 10 (7): 1453–1457. doi:10.1021/ic50101a027.CS1 maint: multiple names: authors list (link)
  31. Hey, E.; Weller, F.; Dehnicke, K. (1984). "Synthese und Kristallstruktur von (PPh4)2[Mo2Cl10]". Zeitschrift für anorganische und allgemeine Chemie. 508: 86–92. doi:10.1002/zaac.19845080113.
  32. Ahmed, Ejaz; Ruck, Michael (2011). "Chemistry of Polynuclear Transition-Metal Complexes in Ionic Liquids". Dalton Transactions. 40 (37): 9347–57. doi:10.1039/c1dt10829h. PMID 21743925.
  33. Kei Inumaru, Takashi Kikudome, Hiroshi Fukuoka, Shoji Yamanaka (2008). "Reversible Emergence of a Self-Assembled Layered Structure From Three-Dimensional Isotropic Ionic Crystal of a Cluster Compound (4-HNC5H4OH)2Mo6Cl14 Driven By Absorption of Water and Alcohols". J. Am. Chem. Soc. 130 (31): 10038–10039. doi:10.1021/ja802752y. PMID 18613684.CS1 maint: multiple names: authors list (link)
  34. Baldas, J.; Bonnyman, J.; Samuels, D. L.; Williams, G. A. (1984). "Structure Studies of Technetium Complexes. VII. Structure of Tetraphenylarsonium Hexachlorotechnetate(IV), [As(C6H5)4]2[TcCl6]". Acta Crystallographica Section C Crystal Structure Communications. 40 (8): 1343–1346. doi:10.1107/S0108270184007903.
  35. Poineau, Frederic; Johnstone, Erik V.; Forster, Paul M.; Ma, Longzou; Sattelberger, Alfred P.; Czerwinski, Kenneth R. (2012). "Probing the Presence of Multiple Metal–Metal Bonds in Technetium Chlorides by X-ray Absorption Spectroscopy: Implications for Synthetic Chemistry". Inorganic Chemistry. 51 (17): 9563–9570. doi:10.1021/ic3014859. PMID 22906536.
  36. Sharutin, V. V.; Sharutina, O. K.; Senchurin, V. S.; Andreev, P. V. (2018). "Synthesis and Structure of Ruthenium Complexes $$\rm[{Ph_{3}PR]_2^+[RuCl6]^{2-}}$$ [ Ph3PR ] 2 + [RuCl6] 2 − (R = C2H5, CH=CHCH3, CH2CH=CHCH3, CH2OCH3), and $$\rm[{Ph_{3PCH2CH=CHCH2{PPh3}]_2^{2+}[Ru_2Cl_{10}O]^{4-}}$$ [ Ph3PCH2CH=CHCH2PPh3 ] 2 2 + [Ru2Cl10O]4− · 4H2O". Russian Journal of Inorganic Chemistry. 63 (9): 1178–1185. doi:10.1134/S0036023618090188. S2CID 105746627.
  37. Bino, Avi; Cotton, F. Albert (1980). "A Linear, Trinuclear, Mixed-Valence Chloro Complex of Ruthenium, [Ru3Cl12]4-". Journal of the American Chemical Society. 102 (2): 608–611. doi:10.1021/ja00522a027.
  38. Frank, Walter; Reiß, Guido J.; Kleinwächter, Ingo (1996). "Spezielle Alkylammoniumhexachlorometallate. I. Kristallisationsverhalten und Kristallstruktur von Diethylentriammoniumhexachlororhodat, [H3N(CH2)2NH2(CH2)2NH3][RhCl6]". Zeitschrift für anorganische und allgemeine Chemie. 622 (4): 729–733. doi:10.1002/zaac.19966220428.
  39. Schwarz, Simon; Strähle, Joachim; Weisser, Ulrike (2002). "Synthese und Struktur der Komplexe [(n-Bu)4N]2[{(THF)Cl4Re≡N}2PdCl2], [Ph4P]2[(THF)Cl4Re≡N-Pd Cl(μ-Cl)]2 und [(n-Bu)4N]2[Pd3Cl8]". Zeitschrift für anorganische und allgemeine Chemie. 628 (11): 2495–2499. doi:10.1002/1521-3749(200211)628:11<2495::AID-ZAAC2495>3.0.CO;2-G.
  40. Fábry, Jan; Dušek, Michal; Fejfarová, Karla; Krupková, Radmila; Vaněk, Přemysl; Němec, Ivan (2004). "Two Phases of Bis(tetraethylammonium) Di-μ-chloro-bis[dichloropalladium(II)]". Acta Crystallographica Section C Crystal Structure Communications. 60 (9): m426–m430. doi:10.1107/S0108270104016725. PMID 15345822.
  41. Dell'Amico, Daniela Belli; Calderazzo, Fausto; Marchetti, Fabio; Ramello, Stefano (1996). "Molecular Structure of[Pd6Cl12] in Single Crystals Chemically Grown at Room Temperature". Angewandte Chemie International Edition in English. 35 (12): 1331–1333. doi:10.1002/anie.199613311.
  42. Helgesson, Goeran; Jagner, Susan (1991). "Halogenoargentate(I) with unusual coordination geometries. Synthesis and Structure of Potassium-crypt Salts of Chloro-, Bromo- and Iodoargentates(I), Including the First Example of a Two-Coordinated Chloroargentate(I) in the Solid State". Inorganic Chemistry. 30 (11): 2574–2577. doi:10.1021/ic00011a024.
  43. Hao, Pengfei; Guo, Chunyu; Shen, Junju; Fu, Yunlong (2019). "A Novel Photochromic Hybrid Containing Trinuclear [Cd3Cl12]6− Clusters and Protonated Tripyridyl-Triazines". Dalton Transactions. 48 (44): 16497–16501. doi:10.1039/C9DT03494C. PMID 31559400.
  44. Costin-Hogan, Christina E.; Chen, Chun-Long; Hughes, Emma; Pickett, Austin; Valencia, Richard; Rath, Nigam P.; Beatty, Alicia M. (2008). ""Reverse" engineering: Toward 0-D Cadmium Halide clusters". CrystEngComm. 10 (12): 1910. doi:10.1039/b812504j.
  45. Chen, Chun-Long; Beatty, Alicia M. (2007). "From Crystal Engineering to Cluster Engineering: How to Transform Cadmium Chloride from 2-D to 0-D". Chem. Commun. (1): 76–78. doi:10.1039/B613761J. PMID 17279266.
  46. Neumüller, Bernhard; Dehnicke, Kurt (2004). "Die Kristallstrukturen von (Ph4P)2[HfCl6]2CH2Cl2 und (Ph4P)2[Hf2Cl10]CH2Cl2". Zeitschrift für anorganische und allgemeine Chemie. 630 (15): 2576–2578. doi:10.1002/zaac.200400370.
  47. Dötterl, Matthias; Haas, Isabelle; Alt, Helmut G. (2011). "Solubility Behaviour of TiCl4, ZrCl4, and HfCl4 in Chloroaluminate Ionic Liquids". Zeitschrift für anorganische und allgemeine Chemie. 637 (11): 1502–1506. doi:10.1002/zaac.201100244.
  48. Jacobson, Robert A.; Thaxton, Charles B. (1971). "Crystal structure of H2[Ta6Cl18].6H2O". Inorganic Chemistry. 10 (7): 1460–1463. doi:10.1021/ic50101a029.
  49. J. C. Taylor, P. W. Wilson (1974). "The Structure of β-Tungsten Hexachloride by Powder Neutron and X-ray Diffraction". Acta Crystallographica. B30 (5): 1216–1220. doi:10.1107/S0567740874004572.CS1 maint: uses authors parameter (link)
  50. Lau, C.; Dietrich, A.; Plate, M.; Dierkes, P.; Neumüller, B.; Wocadlo, S.; Massa, W.; Harms, K.; Dehnicke, K. (2003). "Die Kristallstrukturen der Hexachlorometallate NH4[SbCl6], NH4[WCl6], [K(18-Krone-6)(CH2Cl2)]2[WCl6]·6CH2Cl2 und (PPh4)2[WCl6]·4CH3CN". Zeitschrift für Anorganische und Allgemeine Chemie. 629 (3): 473–478. doi:10.1002/zaac.200390078.
  51. Eichler, W.; Seifert, H.-J. (1977). "Strukturelle und magnetische Untersuchungen an Hexachlorowolframaten(V)". Zeitschrift für anorganische und allgemeine Chemie. 431: 123–133. doi:10.1002/zaac.19774310112.
  52. Cotton, F. Albert; Falvello, Larry R.; Mott, Graham N.; Schrock, Richard R.; Sturgeoff, Lynda G. (1983). "Structural Characterization of the Nonachloroditungsten(II, III) Ion". Inorganic Chemistry. 22 (18): 2621–2623. doi:10.1021/ic00160a031.
  53. Kolesnichenko, Vladimir; Luci, Jeffrey J.; Swenson, Dale C.; Messerle, Louis (1998). "W3(μ3-Cl)(μ-Cl)3Cl9n-(n= 2, 3), Discrete Monocapped Tritungsten Clusters Derived from a New Binary Tungsten Chloride, W3Cl10: Effect of Electron Count on Bonding in IsostructuraltrianguloM3X13Clusters1". Journal of the American Chemical Society. 120 (50): 13260–13261. doi:10.1021/ja9831958.
  54. Kolesnichenko, Vladimir; Messerle, Louis (1998). "Facile Reduction of Tungsten Halides with Nonconventional, Mild Reductants. 2. Four Convenient, High-Yield Solid-State Syntheses of the Hexatungsten Dodecachloride Cluster W6Cl12and Cluster Acid (H3O)2[W6(μ3-Cl)8Cl6](OH2)x, Including New Cation-Assisted Ternary Routes". Inorganic Chemistry. 37 (15): 3660–3663. doi:10.1021/ic980232n. PMID 11670462.
  55. Arp, O.; Preetz, W. (1994). "Darstellung, Schwingungsspektren und Normalkoordinatenanalyse von Hexachlororhenat(V) sowie Kristallstruktur von [P(C6H5)4][ReCl6]". Zeitschrift für anorganische und allgemeine Chemie. 620 (8): 1391–1396. doi:10.1002/zaac.19946200811.
  56. "Structure of Di[bis(triphenylphosphine)iminium] Hexachlororhenate(IV)". Acta Crystallographica Section C. 44 (4): 751–753. 1988. doi:10.1107/S0108270187011910.
  57. Heath, Graham A.; McGrady, John E.; Raptis, Raphael G.; Willis, Anthony C. (1996). "Valence-Dependent Metal−Metal Bonding and Optical Spectra in Confacial Bioctahedral [Re2Cl9]z-(z= 1, 2, 3). Crystallographic and Computational Characterization of [Re2Cl9]and [Re2Cl9]2-". Inorganic Chemistry. 35 (23): 6838–6843. doi:10.1021/ic951604k. PMID 11666851.
  58. Kim, Eunice E.; Eriks, Klaas; Magnuson, Roy (1984). "Crystal Structures of the Tetraphenylphosphonium salts of Hexachloroosmate(V) and Hexachloroosmate(IV), [(C6H5)4P]OsCl6 and [(C6H5)4P]2OsCl6". Inorganic Chemistry. 23 (4): 393–397. doi:10.1021/ic00172a003.
  59. B.Krebs, G.Henkel, M.Dartmann, W.Preetz, M.Bruns (1984). "Reaktionen und Strukturen von [(C2H5)4N][OsCl6] und [(n-C4H9)4N]2[Os2Cl10] / Reactions and Structures of [(C2H5)4N][OsCl6] and [(n-C4H9)4N]2[Os2Cl10]". Z. Naturforsch. 39 (7): 843. doi:10.1515/znb-1984-0701. S2CID 95254820.CS1 maint: multiple names: authors list (link)
  60. Rankin, DA; Penfold, BR; Fergusson, JE (1983). "The chloro and bromo complexes of iridium(III) and iridium(IV). II. Structural chemistry of IrIII complexes". Australian Journal of Chemistry. 36 (5): 871. doi:10.1071/CH9830871.
  61. Sanchis-Perucho, Adrián; Martínez-Lillo, José (2019). "Ferromagnetic Exchange Interaction in a New Ir(IV)–Cu(II) Chain Based on the Hexachloroiridate(IV) Anion". Dalton Transactions. 48 (37): 13925–13930. doi:10.1039/C9DT02884F. PMID 31411207.
  62. Belli Dell'Amico, Daniela; Calderazzo, Fausto; Marchetti, Fabio; Ramello, Stefano; Samaritani, Simona (2008). "Simple Preparations of Pd6Cl12, Pt6Cl12, and Qn[Pt2Cl8+n],n= 1, 2 (Q = TBA+, PPN+) and Structural Characterization of [TBA][Pt2Cl9] and [PPN]2[Pt2Cl10]·C7H8". Inorganic Chemistry. 47 (3): 1237–1242. doi:10.1021/ic701932u. PMID 18166044.
  63. von Schnering, Hans Georg; Chang, Jen-Hui; Peters, Karl; Peters, Eva-Maria; Wagner, Frank R.; Grin, Yuri; Thiele, Gerhard (2003). "Structure and Bonding of the Hexameric Platinum(II) Dichloride, Pt6Cl12 (β-PtCl2)". Zeitschrift für Anorganische und Allgemeine Chemie. 629 (3): 516–522. doi:10.1002/zaac.200390084.
  64. Helgesson, Göran; Jagner, Susan; Vicentini, G.; Rodellas, C.; Niinistö, L. (1987). "Crystal Structures of Tetraethylammonium Dichloroaurate(I) and Tetraethylammonium Diiodoaurate(I)". Acta Chemica Scandinavica. 41a: 556–561. doi:10.3891/acta.chem.scand.41a-0556.
  65. Buckley, Robbie W.; Healy, Peter C.; Loughlin, Wendy A. (1997). "Reduction of [NBu4][AuCl4] to [NBu4][AuCl2] with Sodium Acetylacetonate". Australian Journal of Chemistry. 50 (7): 775. doi:10.1071/C97029.
  66. Goggin, Peter L.; King, Paul; McEwan, David M.; Taylor, Graham E.; Woodward, Peter; Sandström, Magnus (1982). "Vibrational spectroscopic studies of tetra-n-butylammonium trihalogenomercurates; crystal structures of [NBun4](HgCl3) and [NBun4]-(HgI3)". J. Chem. Soc., Dalton Trans (5): 875–882. doi:10.1039/dt9820000875.
  67. Waizumi, K.; Masuda, H.; Ohtaki, H. (1992). "X-ray Structural Studies of FeBr2  4H2O, CoBr2  4H2O, NiCl2  4H2O, and CuBr2  4H2O. cis/trans Selectivity in Transition Metal(II) dihalide Tetrahydrate". Inorganica Chimica Acta. 192: 173–181. doi:10.1016/S0020-1693(00)80756-2.
  68. Morosin, B. (1967). "An X-ray Diffraction Study on Nickel(II) Chloride Dihydrate". Acta Crystallographica. 23 (4): 630–634. doi:10.1107/S0365110X67003305.
  69. Donovan, William F.; Smith, Peter W. (1975). "Crystal and Molecular Structures of Aquahalogenovanadium(III) Complexes. Part I. X-Ray Crystal Structure of trans-Tetrakisaquadibromo-Vanadium(III) Bromide Dihydrate and the Isomorphous Chloro- Compound". Journal of the Chemical Society, Dalton Transactions (10): 894. doi:10.1039/DT9750000894.
  70. Andress, K.R.; Carpenter, C. "Kristallhydrate. II.Die Struktur von Chromchlorid- und Aluminiumchloridhexahydrat" Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie 1934, volume 87, p446-p463.
  71. Zalkin, Allan; Forrester, J. D.; Templeton, David H. (1964). "Crystal structure of manganese dichloride tetrahydrate". Inorganic Chemistry. 3 (4): 529–33. doi:10.1021/ic50014a017.
  72. Lind, M. D. (1967). "Crystal Structure of Ferric Chloride Hexahydrate". The Journal of Chemical Physics. 47 (3): 990–993. Bibcode:1967JChPh..47..990L. doi:10.1063/1.1712067.
  73. Simon A. Cotton (2018). "Iron(III) chloride and its coordination chemistry". Journal of Coordination Chemistry. 71 (21): 3415–3443. doi:10.1080/00958972.2018.1519188. S2CID 105925459.
  74. Manzer, L. E. (1982). Tetrahydrofuran Complexes of Selected Early Transition Metals. Inorganic Syntheses. 21. pp. 135–140. doi:10.1002/9780470132524.ch31.
  75. Hagenbach, Adelheid; Yegen, Eda; Abram, Ulrich (2006). "Technetium Tetrachloride as a Precursor for Small Technetium(IV) Complexes". Inorganic Chemistry. 45 (18): 7331–7338. doi:10.1021/ic060896u. PMID 16933935.
  76. Sobota, Piotr; Ejfler, Jolanta; Szafert, Sławomir; Szczegot, Krzysztof; Sawka-Dobrowolska, Wanda (1993). "New intermediates for the synthesis of olefin polymerization catalysts: The complexes [M2(µ-Cl)2Cl4(THF)4](M = Ti or V, THF = tetrahydrofuran); crystal structures and properties". J. Chem. Soc., Dalton Trans (15): 2353–2357. doi:10.1039/dt9930002353.
  77. Sobota, Piotr; Ejfler, Jolanta; Szafert, Sławomir; Szczegot, Krzysztof; Sawka-Dobrowolska, Wanda (1993). "New intermediates for the synthesis of olefin polymerization catalysts: The complexes [M2(µ-Cl)2Cl4(THF)4](M = Ti or V, THF = tetrahydrofuran); crystal structures and properties". J. Chem. Soc., Dalton Trans (15): 2353–2357. doi:10.1039/dt9930002353.
  78. Babaian-Kibala, Elizabeth; Cotton, F. Albert; Shang, Maoyu (1990). "New synthetic routes for the preparation of niobium(III) and tantalum(III) triangular cluster compounds". Inorganic Chemistry. 29 (26): 5148–5156. doi:10.1021/ic00351a005.
  79. Dilworth, Jonathan R.; Richards, Raymond L. (1990). "The Synthesis of Molybdenum and Tungsten Dinitrogen Complexes". Inorganic Syntheses. 28: 33–43. doi:10.1002/9780470132593.ch7.
  80. Nachtigall, Olaf; Pataki, Astrid; Molski, Matthias; Lentz, Dieter; Spandl, Johann (2015). "Solvates of Manganese Trichloride Revisited - Synthesis, Isolation, and Crystal Structure of MnCl3(THF)3". Zeitschrift für Anorganische und Allgemeine Chemie. 641 (6): 1164–1168. doi:10.1002/zaac.201500106.
  81. Hagenbach, Adelheid; Yegen, Eda; Abram, Ulrich (2006). "Technetium Tetrachloride as a Precursor for Small Technetium(IV) Complexes". Inorganic Chemistry. 45 (18): 7331–7338. doi:10.1021/ic060896u. PMID 16933935.
  82. H.-W.Swidersky, J.Pebler, K.Dehnicke, D.Fenske (1990). "Technetium Tetrachloride as a Precursor for Small Technetium(IV) Complexes". Z.Naturforsch.,B:Chem.Sci. 45 (18): 7331–8. doi:10.1021/ic060896u. PMID 16933935.CS1 maint: multiple names: authors list (link)
  83. Cotton, F.Albert; Luck, Rudy L.; Son, Kyung-Ae (1991). "New polynuclear compounds of iron(II) chloride with oxygen donor ligands Part I. Fe4Cl8(THF)6: Synthesis and a single crystal X-ray structure determination". Inorganica Chimica Acta. 179: 11–15. doi:10.1016/S0020-1693(00)85366-9.
  84. Sobota, Piotr; Olejnik, Zofia; Utko, Józef; Lis, Tadeusz (1993). "Synthesis, magnetic properties and structure of the [Co4(μ3-Cl)2(μ2-Cl)4Cl2(THF)6] complex". Polyhedron. 12 (6): 613–616. doi:10.1016/S0277-5387(00)84976-1.
  85. Ward, Laird G. L. (1972). "Anhydrous Nickel(II) Halides and their Tetrakis(ethanol) and 1,2-Dimethoxyethane Complexes". Inorganic Syntheses. Inorganic Syntheses. 13. pp. 154–164. doi:10.1002/9780470132449.ch30. ISBN 9780470132449.
  86. Becker, Sabine; Dürr, Maximilian; Miska, Andreas; Becker, Jonathan; Gawlig, Christopher; Behrens, Ulrich; Ivanović-Burmazović, Ivana; Schindler, Siegfried (2016). "Copper Chloride Catalysis: Do μ4-Oxido Copper Clusters Play a Significant Role?". Inorganic Chemistry. 55 (8): 3759–3766. doi:10.1021/acs.inorgchem.5b02576. PMID 27045752.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.