List of Solar System objects by size

This is a partial list of Solar System objects by size, arranged in descending order of mean volumetric radius, and divided into several size classes. These lists can also be sorted according to an object's mass and, for the largest objects, volume, density and surface gravity, insofar as these values are available. This list contains the Sun, the planets, dwarf planets, many of the larger small Solar System bodies (which includes the asteroids), all named natural satellites, and a number of smaller objects of historical or scientific interest, such as comets and near-Earth objects.

Objects on this list are ordered by mean radius rather than mass; thus, objects on the lower portions of the table can be more massive than objects higher on the list if they have a higher density.

Many trans-Neptunian objects (TNOs) have been discovered; in many cases their positions in this list are approximate, as there is frequently a large uncertainty in their estimated diameters.

Solar System objects more massive than 1021 kilograms (one yottagram [Yg]) are known or expected to be approximately spherical. Astronomical bodies relax into rounded shapes (ellipsoids), achieving hydrostatic equilibrium, when their own gravity is sufficient to overcome the structural strength of their material. It was believed that the cutoff for round objects is somewhere between 100 km and 200 km in radius if they have a large amount of ice in their makeup;[1] however, later studies revealed that icy satellites as large as Iapetus (1,470 kilometers in diameter) are not in hydrostatic equilibrium at this time,[2] and a 2019 assessment suggests that many TNOs in the size range of 400-1000 kilometers may not even be fully solid bodies, much less gravitationally rounded.[3] Objects that are ellipsoids due to their own gravity are here generally referred to as being "round", whether or not they are actually in equilibrium today, while objects that are clearly not ellipsoidal are referred to as being "irregular".

Spheroidal bodies typically have some polar flattening due to the centrifugal force from their rotation, and can sometimes even have quite different equatorial diameters (scalene ellipsoids such as Haumea). Unlike bodies such as Haumea, the irregular bodies have a significantly non-ellipsoidal profile, often with sharp edges.

There can be difficulty in determining the diameter (within a factor of about 2) for typical objects beyond Saturn. (See 2060 Chiron as an example.) For TNOs there is some confidence in the diameters, but for non-binary TNOs there is no real confidence in the masses/densities. Many TNOs are often just assumed to have Pluto's density of 2.0 g/cm3, but it is just as likely that they have a comet-like density of only 0.5 g/cm3.[4] For example, if a TNO is incorrectly assumed to have a mass of 3.59×1020 kg based on a radius of 350 km with a density of 2 g/cm3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm3, its true mass would be only 1.12×1019 kg.

The sizes and masses of many of the moons of Jupiter and Saturn are fairly well known due to numerous observations and interactions of the Galileo and Cassini orbiters; however, many of the moons with a radius less than ~100 km, such as Jupiter's Himalia, have far less certain masses.[5] Further out from Saturn, the sizes and masses of objects are less clear. There has not yet been an orbiter around Uranus or Neptune for long-term study of their moons. For the small outer irregular moons of Uranus, such as Sycorax, which were not discovered by the Voyager 2 flyby, even different NASA web pages, such as the National Space Science Data Center[6] and JPL Solar System Dynamics,[5] give somewhat contradictory size and albedo estimates depending on which research paper is being cited.

There are uncertainties in the figures for mass and radius, and irregularities in the shape and density, with accuracy often depending on how close the object is to Earth or whether it has been visited by a probe.

Graphical overview

Relative sizes of the fifty largest bodies in the Solar System, colored by orbital region. Values are diameters in kilometers. Scale is linear.

List of objects by mean radius

Larger than 400 km

It was once expected that any icy body larger than approximately 200 km in radius was likely to be in hydrostatic equilibrium (HE).[7] However, Ceres (r = 470 km) is the smallest body for which detailed measurements are consistent with hydrostatic equilibrium,[8] whereas Iapetus (r = 735 km) is the largest icy body that has been found to not be in hydrostatic equilibrium.[9]

For simplicity and comparative purposes, the values are manually calculated assuming a sphericity of 1. The size of solid bodies does not include an object's atmosphere. For example, Titan looks bigger than Ganymede, but its solid body is smaller. For the giant planets, the "radius" is defined as the distance from the center at which the atmosphere reaches 1 bar of atmospheric pressure.[10]

Body[note 1] Image Radius[note 2] Volume Mass Density Gravity[note 3] Type # (R/M)
[note 4]
Discovery
(km) (R) (109 km3) (V) (1021 kg) (M) (g/cm3) (m/s2) ()
Sun
695508 ± ?[11] 109.2[11] 1,409,300,000[11] 1,301,000[11] 1989100000[11] 333,000[11] 1.409[11] 274.0[11] 27.94[11] G2V-class star 1 -
Jupiter
69911±6[12] 10.97 1,431,280 1,321 1898187±88[12] 317.83 1.3262±0.0003[12] 24.79[12] 2.528 gas giant planet; has rings 2 -
Saturn
58232±6[12]
(136775 for main rings)
9.140 827,130 764 568317±13[12] 95.162 0.6871±0.0002[12] 10.44[12] 1.065 gas giant planet; has rings 3 -
Uranus
25362±7[12] 3.981 68,340 63.1 86813±4[12] 14.536 1.270±0.001[12] 8.87[12] 0.886 ice giant planet; has rings 4/5 1781
Neptune
24622±19[12] 3.865 62,540 57.7 102413±5[12] 17.147 1.638±0.004[12] 11.15[12] 1.137 ice giant planet; has rings 5/4 1846
Earth
6371.0084±0.0001[12] 1 1,083.21 1 5972.4±0.3[12] 1 5.5136±0.0003[12] 9.80[12] 1 terrestrial planet 6 -
Venus
6052±1[12] 0.9499 928.43 0.857 4867.5±0.2[12] 0.815 5.243±0.003[12] 8.87[12] 0.905 terrestrial planet 7 -
Mars
3389.5±0.2[12] 0.5320 163.18 0.151 641.71±0.03[12] 0.107 3.9341±0.0007[12] 3.71[12] 0.379 terrestrial planet 8 -
Ganymede
Jupiter III
2634.1±0.3 0.4135 76.30 0.0704 148.2 0.0248 1.936 1.428 0.146 moon of Jupiter (icy) 9/10 1610
Titan
Saturn VI
2574.73±0.09[lower-alpha 1] 0.4037[lower-alpha 1] 71.50 0.0658 134.5 0.0225 1.8798 ± 0.0044 1.354 0.138 moon of Saturn (icy) 10/11 1655
Mercury
2439.4±0.1[12] 0.3829 60.83 0.0562 330.11±0.02[12] 0.0553 5.4291±0.007[12] 3.70[12] 0.377 terrestrial planet 11/9 -
Callisto
Jupiter IV
2410.3±1.5 0.3783 58.65 0.0541 107.6 0.018 1.8344 ± 0.0034 1.23603 0.126 moon of Jupiter (icy) 12 1610
Io
Jupiter I
1821.6±0.5 0.2859 25.32 0.0234 89.32 0.015 3.528 ± 0.006 1.797 0.183 moon of Jupiter (terrestrial) 13 1610
Moon (Luna)
Earth I
1737.5±0.1[13] 0.2727 21.958 0.0203 73.46[14] 0.0123 3.344±0.005[13] 1.625 0.166 moon of Earth (terrestrial) 14 -
Europa
Jupiter II
1560.8±0.5 0.2450 15.93 0.0147 48.00 0.008035 3.013 ± 0.005 1.316 0.134 moon of Jupiter (terrestrial) 15 1610
Triton
Neptune I
1353.4±0.9[lower-alpha 1] 0.2124[lower-alpha 1] 10.38 0.0096 21.39±0.03 0.003599 2.061 0.782 0.0797 moon of Neptune (icy) 16 1846
Pluto
134340
1188.3±0.8 0.187 7.057 0.00651 13.03±0.03 0.0022 1.854 ± 0.006 0.620 0.063 dwarf planet; plutino; multiple 17/18 1930
Eris
136199
1163±6[lower-alpha 2][15] 0.1825[lower-alpha 2] 6.59 0.0061 16.6±0.2[16] 0.0028 2.52±0.07 0.824 0.083 dwarf planet; SDO; binary 18/17 2003
Titania
Uranus III
788.4±0.6[lower-alpha 3] 0.1237[lower-alpha 3] 2.06 0.0019 3.40±0.06 0.00059 1.711 ± 0.005 0.378 0.0385 moon of Uranus 19–20/20 1787
Haumea
136108
760±40
(≈ 780 best fit)[17][lower-alpha 4]
0.12 1.98[lower-alpha 5] 0.0018 4.01±0.04[18] 0.00066 2.018[17][lower-alpha 4] 0.401 0.0409 dwarf planet?;
resonant KBO (7:12);
trinary; has rings
19–24/19 2004
Rhea
Saturn V
763.8±1.0[lower-alpha 3] 0.1199[lower-alpha 3] 1.87 0.0017 2.307 0.00039 1.236 ± 0.005 0.26 0.027 moon of Saturn 20–22/23 1672
Oberon
Uranus IV
761.4±2.6[lower-alpha 1] 0.1195[lower-alpha 1] 1.85 0.0017 3.08±0.09 0.0005 1.63 ± 0.05 0.347 0.035 moon of Uranus 20–22/21–22 1787
Iapetus
Saturn VIII
734.5±2.8 0.1153 1.66 0.0015 1.806 0.00033 1.088 ± 0.013 0.223 0.0227 moon of Saturn 22–24/24–25 1671
Makemake
136472
715+19
−11
[19]
0.112 1.53 0.0014  3.1 0.00053 1.95 0.57 0.0581 dwarf planet?; cubewano 22–24/21–22 2005
Gonggong
225088
615±25[20] 0.0983 1.03 0.0009 1.75±0.07 0.00029 1.72 ± 0.16 0.3 0.0306 dwarf planet?; resonant SDO (3:10) 25–27/24–25 2007
Charon
Pluto I
606±0.5 0.0951 0.932 0.0009 1.586±0.015 0.00025 1.702 ± 0.021 0.288 0.0294 moon of Pluto 25–26/? 1978
Umbriel
Uranus II
584.7±2.8 0.0918 0.837 0.0008 1.28±0.03 0.00020 1.39 ± 0.16 0.234 0.024 moon of Uranus 26–27/? 1851
Ariel
Uranus I
578.9±0.6 0.0909 0.813 0.0007 1.25±0.02 0.000226 1.66 ± 0.15 0.269 0.027 moon of Uranus 28/? 1851
Dione
Saturn IV
561.4±0.4 0.0881 0.741 0.0007 1.095 0.000183 1.478 ± 0.003 0.232 0.0237 moon of Saturn 29–30/? 1684
Quaoar
50000
560.5±0.6 0.0879 0.737 0.0007 1.4±0.2 0.0002 1.99 ± 0.46[21] 0.3 0.0306 cubewano; binary 29–30/? 2002
Tethys
Saturn III
531.1±0.6 0.0834 0.624 0.0006 0.617 0.000103 0.984 ± 0.003[22] 0.145 0.015 moon of Saturn 31–32/? 1684
Sedna
90377
498±40 0.0785 0.516 0.0005 ? sednoid; detached object ? 2003
Ceres
1
469.7±0.1[23] 0.0742 0.433 0.0004 0.938[24] 0.000157 2.17 0.28 0.029 dwarf planet; belt asteroid ? 1801
Orcus
90482
458±13 0.0719 0.404 0.0004 0.61±0.04 0.0001 1.53 ± 0.14 0.2 0.0204 plutino; binary ? 2004
Salacia
120347
423±11 0.0664 0.3729 0.0003 0.492±0.007[25] 0.000082 1.5 ± 0.12[25] 0.165 0.0168 cubewano; binary ? 2004

From 200 to 399 km

All imaged icy moons with radii greater than 200 km except Proteus are clearly round, although those under 400 km that have had their shapes carefully measured are not in hydrostatic equilibrium.[26] The known densities of TNOs in this size range are remarkably low (1–1.2 g/cm3), implying that the objects retain significant internal porosity from their formation and were never gravitationally compressed into fully solid bodies.[27]

Body[note 1] Image Radius[note 2]
(km)
Mass
(1020 kg)
Density
(g/cm3)
Type[note 5] Refs[note 6]
r · M
2002 MS4
307261
390±6 cubewano [29]
2002 AW197
55565
384±19 cubewano [30]
Varda
174567
373±8  2.5 1.27+0.41
−0.44
cubewano; binary [31] · [31]
2013 FY27
532037
370+45
−43
detached object; binary [32]
2003 AZ84
208996
353±12 0.87±0.01 plutino; possible binary [33]
Dysnomia
Eris I
350±58 moon of Eris [34]
2004 GV9
90568
340±17 cubewano [35]
2005 RN43
145452
340+28
−37
cubewano [35]
Varuna
20000
334+77
−43
 1.6 0.99 cubewano [36] · [37]
2002 UX25
55637
332±15 1.25±0.03 0.82±0.11 cubewano; binary [38] · [39]
2012 VP113 325±175 sednoid [40]
Gǃkúnǁʼhòmdímà
229762
321±14 1.361±0.033 1.02±0.17 SDO; binary [41] · [27]
2014 UZ224
318+16
−20
SDO [42]
2015 RR245
523794
 313 resonant KBO (2:9); binary [43]
2008 OG19
470599
309.5+28
−56.5
0.609±0.004 SDO [44] · [44]
Ixion
28978
308.5±10 plutino [45]
2007 JJ43
278361
305+85
−70
cubewano [46]
Chaos
19521
300+70
−65
cubewano [35]
2014 EZ51
523692
> 288 SDO [47]
2002 XW93
78799
283+36
−37
other TNO [48]
2004 XR190
 278 SDO [7]
2002 XV93
275+11
−12
plutino [49]
2003 VS2
84922
274+15
−22
plutino [50]
2003 UZ413
455502
 268 plutino [7]
Vesta
4
262.7±0.1 2.59 3.46 belt asteroid type V [51] · [51]
2005 RM43
145451
262+48
−52
SDO [52]
Pallas
2
256±3 2.04±0.03 2.89±0.08 belt asteroid type B [53]
2004 TY364
120348
256+19
−20
cubewano [45]
Enceladus
Saturn II
252.1±0.2 1.08±0.001 1.609±0.005 moon of Saturn [54] · [55]
2002 TC302
84522
249.8 resonant SDO (2:5) [56]
2005 UQ513
202421
249+32
−38
cubewano [30]
Miranda
Uranus V
235.8±0.7 0.659±0.075 1.2±0.15 moon of Uranus [57] · [58]
Dziewanna
471143
235+18
−5
SDO [59]
2005 TB190
145480
232±31 detached object [34]
1999 DE9
26375
231±23 resonant SDO (2:5) [60]
2003 FY128
120132
230±11 SDO [34]
2002 VR128
84719
224+24
−22
plutino [49]
Vanth
Orcus I
221.3±5.1  0.7  1.5 moon of 90482 Orcus [61] · [61]
Hygiea
10
217±7 0.832±0.08 1.944±0.25 belt asteroid type C [62] · [62]
2004 NT33
444030
212+44
−40
cubewano [30]
Proteus
Neptune VIII
210±7 0.44  1.3 moon of Neptune [5] · [5]
2005 QU182
303775
208±37 SDO [34]
2002 KX14
119951
207.5±0.5 cubewano [63]
2001 QF298
469372
204+20
−22
plutino [49]
Huya
38628
203±8 > 0.5 > 1.43 plutino; binary [38] · [64]
2004 PF115
175113
203+49
−38
plutino [49]

Legend:

SDO – scattered disc object
cubewano – classical Kuiper belt object
plutino – 2:3 orbital resonance with Neptune

From 100 to 199 km

This list contains a selection of objects estimated to be between 100 and 199 km in radius (200 and 399 km in diameter). The largest of these may lie above the boundary for hydrostatic equilibrium, but most are irregular. Most of the trans-Neptunian objects (TNOs) listed with a radius smaller than 200 km have "assumed sizes based on a generic albedo of 0.09" since they are too far away to directly measure their sizes with existing instruments. Mass switches from 1021 kg to 1018 kg (Zg). Main-belt asteroids have orbital elements constrained by (2.0 AU < a < 3.2 AU; q > 1.666 AU) according to JPL Solar System Dynamics (JPLSSD).[65] Many TNOs are omitted from this list as their sizes are poorly known.[28]

Body[note 1] Image Radius[note 2]
(km)
Mass
(1018 kg)
Type Refs[note 6]
r · M
2004 UX10
144897
199±19.5  30 plutino [49] · [66]
Mimas
Saturn I
198.2±0.4 37.49±0.03 moon of Saturn [54] · [55]
1998 SN165
35671
196.5±19.5 cubewano [30]
Nereid
Neptune II
178.5±6.5 moon of Neptune [67]
2001 UR163
42301
 176 resonant KBO (4:9) [28]
1996 TL66
15874
169.5±10 SDO [34]
2004 XA192
230965
169.5+60
−47.5
SDO [49]
2002 WC19
119979
 169 77±5 resonant KBO (1:2); binary [68] · [68]
Interamnia
704
166±3 38±13 belt asteroid type F [69] · [69]
Ilmarë
Varda I
163+19
−17
moon of 174567 Varda [70]
Hiʻiaka
Haumea I
 160 17.9±1.1 moon of Haumea [18] · [18]
Europa
52
152.0±1.8 23.8±5.8 belt asteroid type C [71] · [72]
Davida
511
145.2±1.1 33.8±10.2 belt asteroid type C [73] · [72]
2002 TX300
55636
143±5 cubewano [74]
Sylvia
87
143±5.5 14.78±0.06 outer belt asteroid type X; trinary [75] · [76]
Actaea
Salacia I
143±12 moon of 120347 Salacia [77]
Hyperion
Saturn VII
138.6±4 5.62±0.05 moon of Saturn [26] · [26]
Lempo
47171
136+8.5
−9.5
plutino; trinary [78]
1998 SM165
26308
134±14 6.87±1.8 resonant KBO (1:2) [79] · [79]
Euphrosyne
31
134±2 17±3 belt asteroid type C; binary [71] · [72]
Chariklo
10199
 130 centaur; has rings [80]
Eunomia
15
128.2±1.5 31.4±1.8 belt asteroid type S [81] · [72]
Hiisi
Lempo II
125.5+8
−8.5
secondary of 47171 Lempo [78]
Hektor
624
125±13 7.9±1.4 Jupiter trojan (L4) type D; binary [82] · [82]
Sila
79360
124.5+15
−15.5
10.8±0.22 cubewano; binary [83]
2007 RW10
309239
123.5±15 quasi-satellite of Neptune [34]
Juno
3
123.3±5.9 27.3±2.9 belt asteroid type S [84] · [72]
Altjira
148780
123+19
−70
cubewano; binary [30]
Cybele
65
118.6±2.1 13.6±3.1 outer belt asteroid type C [85] · [72]
Nunam
79360
118+14
−15
secondary of 79360 Sila [83]
Patientia
451
112.9±2.3 10.9±5.3 belt asteroid type C [84] · [72]
Ceto
65489
111.5±5 5.4±0.4 extended centaur; binary [34] · [86]
Herculina
532
111.2±2.4 belt asteroid type S [85]
Psyche
16
111±2 24.1±3.2 belt asteroid type M [87]
S/2007 (148780) 1
Altjira I
110.5+17
−62.5
secondary of 148780 Altjira [30]
Bamberga
324
110.35±0.72 10±1 belt asteroid type C [84] · [72]
Doris
48
108.2±2.4 6.1±3.0 belt asteroid type C [84] · [72]
Chiron
2060 or 95P
108±5 centaur; has rings [38]
Egeria
13
107±6 8.8±4.2 belt asteroid type G [72] · [72]
Iris
7
107±2.5 13.8±1.3 belt asteroid type S [88] · [88]
Phoebe
Saturn IX
106.6±0.8 8.29±0.01 moon of Saturn [26] · [26]
S/2012 (38628) 1
Huya I
106±15 moon of 38628 Huya [38]
Camilla
107
105±4 11.2±0.3 outer belt asteroid type C; trinary [84] · [72]
Fortuna
19
103±3 8.6±1.5 belt asteroid type G [72] · [72]
Thisbe
88
102±5 15.3±3.1 belt asteroid type B [72] · [72]
Eugenia
45
101±1 5.7±0.1 belt asteroid type F; trinary [84] · [89]
Legend:
centaur – asteroids orbiting between the outer planets
Jupiter trojan – asteroids located in Jupiter's L4 and L5 Lagrange points

From 50 to 99 km

This list contains a selection of objects 50 and 99 km in radius (100 km to 199 km in average diameter). The listed objects currently include most objects in the asteroid belt and moons of the giant planets in this size range, but many newly discovered objects in the outer Solar System are missing, such as those included in the following reference.[28] Asteroid spectral types are mostly Tholen, but some might be SMASS.

Body[note 1] Image Radius[note 2]
(km)
Mass
(1018 kg)
Type Refs[note 6]
r · M
Bienor
54598
99+3
−3.5
centaur [90]
Themis
24
98±2 5.9±1.9 belt asteroid type C [84] · [72]
Larissa
Neptune VII
97.0±5.4  4.2 moon of Neptune [91] · [lower-alpha 6]
Ursula
375
96.8±1.3 8.4±5.3 belt asteroid type C [81] · [72]
Amphitrite
29
94.8±0.6 13±2 belt asteroid type S [84] · [72]
Daphne
41
94.5±0.5 6.3±0.1 belt asteroid type C; binary [93] · [72]
Aurora
94
93.8±3.6 6.2±3.6 belt asteroid type C [73] · [72]
Hermione
121
94±3 5.0±0.3 outer belt asteroid type C; binary [94] · [72]
Bertha
154
93.4±0.9 9.2±5.2 belt asteroid type C [72] · [72]
Hebe
6
92.6±1.4 14±1 belt asteroid type S [85] · [72]
Metis
9
 92 8.4±1.7 belt asteroid type S [84] · [72]
Elektra
130
90.3±1.3 6.6±0.4 belt asteroid type G; trinary [84] · [95]
Janus
Saturn X
89.5±1.4 1.898±0.001 moon of Saturn [26] · [26]
Teharonhiawako
88611
89+16
−18
2.44±0.03 cubewano; binary [30] · [96]
Aegle
96
88.9±0.8 6.4±6.3 belt asteroid type T [84] · [72]
S/2015 (136472) 1
Makemake I
 87.5 moon of Makemake [97]
Galatea
Neptune VI
87.4±4.9 2.12±0.08 moon of Neptune [91] · [98]
Phorcys
Ceto I
87+8
−9
 1.67 secondary of 65489 Ceto [86] · [86]
Palma
372
86.8±1.4 5.2±0.6 belt asteroid type B [71] · [72]
Alauda
702
86±28 6.06±0.36 belt asteroid type C; binary [71] · [99]
Hilda
153
85.3±1.6 outer belt asteroid; Hildas [85]
Himalia
Jupiter VI
85 4.2±0.6 moon of Jupiter [5] · [100]
Namaka
Haumea II
 85 1.8±1.5 moon of Haumea [18] · [18]
Weywot
Quaoar I
 85 moon of 50000 Quaoar
Freia
76
84.2±1.0 2.0±4.2 outer belt asteroid type P/type X [81] · [72]
Kalliope
22
83.8±1.5 8.16±0.26 belt asteroid type M; binary [84] · [101]
Amalthea
Jupiter V
84±2 2.08±0.15 moon of Jupiter [102] · [103]
Agamemnon
911
83.3±2.0 Jupiter trojan (L4) type D [85]
Elpis
59
82.6±2.3 3±0.5 belt asteroid type CP/type B [84] · [72]
Puck
Uranus XV
81±2 moon of Uranus [104]
Sycorax
Uranus XVII
78.5+11.5
−7.5
moon of Uranus [105]
Despina
Neptune V
78±5 moon of Neptune [91]
Io
85
77.4±1.9 2.6±1.5 belt asteroid type FC/type B [85] · [72]
Minerva
93
77.08±0.65 3.5±0.4 belt asteroid type C; trinary [84] · [72]
Alexandra
54
77.07±0.32 6.2±3.5 belt asteroid type C [84] · [72]
Laetitia
39
77±2 4.7±1.1 belt asteroid type S [72] · [72]
Parthenope
11
75±1 5.91±0.45 belt asteroid type S [81] · [72]
Manwë
385446
 75  1.41 resonant KBO (4:7); binary [106] · [106]
Pales
49
 74.9 4.2±2.2 belt asteroid type C [85] · [72]
Arethusa
95
74.0±2.4 belt asteroid type C [73]
Flora
8
73.7±0.5  9.2±1.8 belt asteroid type S [84] · [72]
Pulcova
762
73.7±0.4 1.4±0.1 belt asteroid type F; binary [84] · [107]
Julia
89
72.7±0.6 6.7±1.8 belt asteroid type S [84] · [72]
Irene
14
72±1 2.9±1.9 belt asteroid type S [81] · [72]
Aglaja
47
71±4 3.2±1.7 belt asteroid type C [72] · [72]
Patroclus
617
70.181±0.434 1.36±0.11 Jupiter trojan (L5) type P; binary [84] · [72]
Melpomene
18
69.797±1.226 3 belt asteroid type S [84] · [108]
Nemausa
51
69.079±0.483 2.48±0.86 belt asteroid type G [84] · [72]
Hesperia
69
69.065±2.35 5.86±1.18 belt asteroid type M [85] · [72]
Typhon
42355
69±4.5 0.87±0.03 resonant SDO (7:10); binary [90] · [109]
Massalia
20
67.84±1.837 5±1.04 belt asteroid type S [71] · [72]
Portia
Uranus XII
67.6±4 moon of Uranus [5]
Emma
283
66.193±0.129 1.38±0.03 belt asteroid type X; binary [84] · [72]
Paha
Lempo I
66+4
−4.5
0.746±0.001 moon of 47171 Lempo [78] · [110]
Lucina
146
65.947 belt asteroid type C [111]
Sawiskera
Teharonhiawako I
65.5+12
−13
secondary of 88611 Teharonhiawako [30]
Kleopatra
216
65.333 4.64±0.02 belt asteroid type M; trinary [112] · [72]
Achilles
588
65.049±0.277 Jupiter trojan (L4) type DU [84]
Panopaea
70
63.956±0.373 4.33±1.09 belt asteroid type C [84] · [72]
Thule
279
63.295±1.85 belt asteroid type D [85]
Borasisi
66652
63+12.5
−25.5
3.433±0.027 cubewano; binary [30] · [113]
Hestia
46
62.07±1.7 3.5 belt asteroid type P/type Xc [85] · [114]
Leto
68
61.255±1.569 3.28±1.9 belt asteroid type S [84] · [72]
Undina
92
60.465±0.850 4.43±0.25 belt asteroid type X [81] · [72]
Bellona
28
60.45±1.90 2.62±0.15 belt asteroid type S [115] · [72]
Diana
78
60.30±1.35 1.27±0.13 belt asteroid type C [116] · [72]
Anchises
1173
60.245±1.455 Jupiter trojan (L5) type P [81]
Galatea
74
59.355±1.400 6.13±5.36 belt asteroid type C [117] · [72]
Deiphobus
1867
59.110±0.808 Jupiter trojan (L5) type D [118]
Äneas
1172
59.010±0.403 Jupiter trojan (L5) type D [119]
Diomedes
1437
58.893±0.59 Jupiter trojan (L4) type D [120]
Terpsichore
81
58.864±0.367 6.19±5.31 belt asteroid type C [121] · [72]
Epimetheus
Saturn XI
58.1±1.8 5.266±0.006 moon of Saturn [26] · [26]
Circe
34
57.745±0.989  3.66±0.03 belt asteroid type C [84] · [72]
Leda
38
57.705±0.665 5.71±5.47 belt asteroid type C [72] · [72]
Victoria
12
57.544±0.599 2.45±0.46 belt asteroid type S [122] · [72]
Odysseus
1143
57.312±0.296 Jupiter trojan (L4) type D [123]
Alcathous
2241
56.841±0.858 Jupiter trojan (L5) type D [124]
Melete
56
56.62±0.85 4.61 belt asteroid type P [85] · [72]
Mnemosyne
57
56.295±1.4  12.6±2.4 belt asteroid type S [125] · [72]
Nestor
659
56.16±0.925 Jupiter trojan (L4) type XC [126]
Harmonia
40
55.626±0.196 belt asteroid type S [127]
Leleākūhonua
541132
55+7
−5
sednoid [128]
Euterpe
27
54.895±0.77 1.67±1.01 belt asteroid type S [81] · [72]
Antilochus
1583
54.421±0.272 Jupiter trojan (L4) type D [84]
Thorondor
Manwë I
54 0.5 secondary of 385446 Manwë [106] · [106]
Thalia
23
53.765±1.1 1.96±0.09 belt asteroid type S [129] · [72]
Erato
62
53.461±0.329 belt asteroid type BU/type Ch [130]
Astraea
5
53.349±1.57 2.9 belt asteroid type S [131] · [114]
Pabu
Borasisi I
52.5+10
−21
secondary of 66652 Borasisi [30]
Eos
221
51.76±2.8  5.87±0.34 belt asteroid type S/type K [72] · [72]
Aegina
91
51.701±0.242 belt asteroid type C [132]
Leukothea
35
51.528±0.601 belt asteroid type C [133]
Menoetius
Patroclus I
51.4±0.25 secondary of 617 Patroclus [134]
Isis
42
51.365±1.365 1.58±0.52 belt asteroid type S [72] · [72]
Klotho
97
50.359±0.321 1.33±0.13 belt asteroid type M [84] · [72]
Troilus
1208
50.239±0.549 Jupiter trojan (L5) type FCU [135]

From 20 to 49 km

This list includes few examples since there are about 589 asteroids in the asteroid belt with a measured radius between 20 and 49 km.[136] Many thousands of objects of this size range have yet to be discovered in the trans-Neptunian region. The number of digits is not an endorsement of significant figures. The table switches from ×1018 kg to ×1015 kg (Eg). Most mass values of asteroids are assumed.[72][108]

Body[note 1] Image Radius[note 2]
(km)
Mass
(1015 kg)
Type – notes Refs[note 6]
r · M
Asterope
233
49.836±0.573 belt asteroid type T/type K [137]
Pholus
5145
49.5+7.5
−7
centaur [90]
Thebe
Jupiter XIV
49.3±2 moon of Jupiter [102]
Lutetia
21
49±1 1700±17 belt asteroid type M [138] · [139]
Kalypso
53
48.631±13.299  5630±5000 belt asteroid type XC [140] · [72]
Proserpina
26
47.4±0.85 748±895 belt asteroid type S [141] · [72]
Juliet
Uranus XI
46.8±4 moon of Uranus [5]
Urania
30
46.394±1.02 1740±490 belt asteroid type S [142] · [72]
Ausonia
63
45.816±2.181 1530±150 belt asteroid type S [84] · [72]
Beatrix
83
44.819±1.326 belt asteroid type X [84]
Concordia
58
44.806±0.419 belt asteroid type C [84]
Echidna
Typhon I
44.5±3 moon of 42355 Typhon [109]
Automedon
2920
44.287±0.898 Jupiter trojan (L4) type D [143]
90 Antiope 43.9±0.5 828±22 belt asteroid type C; binary [144] · [144]
Prometheus
Saturn XVI
43.1±2.7 159.5±1.5 moon of Saturn [26] · [26]
Danaë
61
42.969±1.076 2890±2780 belt asteroid type S [145] · [72]
Thetis
17
42.449±1.014 1200 belt asteroid type S [146] · [108]
Pandora
55
42.397±1.251 belt asteroid type M [147]
Huenna
379
42.394±0.779 383±19 belt asteroid type B/type C; binary [148] · [95]
Virginia
50
42.037±0.121 2310±700 belt asteroid type X/type Ch [149] · [72]
Feronia
72
41.975±2.01  3320±8490 belt asteroid type TDG [72] · [72]
S/2000 (90) 1
Antiope I
41.9±0.5 secondary of 90 Antiope [144]
Poulydamas
4348
41.016±0.313 Jupiter trojan (L5) type C [150]
Logos
58534
41±9 458±6.9 cubewano; binary [151] · [151]
Pandora
Saturn XVII
40.7±1.5 137.1±1.9 moon of Saturn [26] · [26]
Thalassa
Neptune IV
40.7±2.8 moon of Neptune [91]
Niobe
71
40.43±0.4 belt asteroid type S [81]
Pomona
32
40.38±0.8 belt asteroid type S [152]
Belinda
Uranus XIV
40.3±8 moon of Uranus [5]
Elara
Jupiter VII
39.95±1.7 moon of Jupiter [153]
Cressida
Uranus IX
39.8±2 moon of Uranus [5]
Amycus
55576
38.15±6.25 centaur [60]
Hylonome
10370
37.545 centaur [154]
1974 FV1
3708
37.831±0.404 Jupiter trojan (L5) type C [84]
Nysa
44
37.83±0.37 belt asteroid type E [81]
Rosalind
Uranus XIII
36±6 moon of Uranus [5]
Maja
66
35.895±0.46 belt asteroid type C [81]
Ariadne
43
35.67±0.627  1210±220 belt asteroid type S [155] · [72]
Iphigenia
112
35.535±0.26  1970±6780 belt asteroid type C [72] · [72]
Dike
99
33.677±0.208 belt asteroid type C [156]
Echeclus
60558 or 174P
32.3±0.8 centaur [90]
Desdemona
Uranus X
32±4 moon of Uranus [5]
Eurybates
3548
31.943±0.149 Jupiter trojan (L4) type CP [84]
Eurynome
79
31.739±0.476 belt asteroid type S [157]
Eurydike
75
31.189±0.802 belt asteroid type M [158]
Halimede
Neptune IX
 31 moon of Neptune [5]
Phocaea
25
30.527±1.232 599±60 belt asteroid type S [84] · [72]
Naiad
Neptune III
30.2±3.2 moon of Neptune [91]
Schwassmann–
Wachmann 1

29P
30.2±3.7 comet [159]
Neso
Neptune XIII
 30 moon of Neptune [5]
Angelina
64
29.146±0.541 belt asteroid type E [160]
Pasiphae
Jupiter VIII
28.9±0.4 moon of Jupiter [153]
Alkmene
82
28.811±0.357 belt asteroid type S [161]
Nessus
7066
28.5±8.5 centaur [90]
Polana
142
27.406±0.139 belt asteroid type F [162]
Bianca
Uranus VIII
27±2 moon of Uranus [5]
Mathilde
253
26.4 103.3±4.4 belt asteroid type C [163] · [164]
Hidalgo
944
26.225±1.8 centaur [81]
Orus
21900
25.405±0.405 Jupiter trojan (L4) type C/type D [84]
Amalthea
113
25.069±0.633 belt asteroid type S; binary [84]
Prospero
Uranus XVIII
 25 moon of Uranus [5]
Setebos
Uranus XIX
 24 moon of Uranus [5]
Carme
Jupiter XI
23.35±0.45 moon of Jupiter [153]
Klytia
73
22.295±0.471 belt asteroid type S [165]
Sao
Neptune XI
 22 moon of Neptune [5]
Echo
60
21.609±0.286 315±32 belt asteroid type S [166] · [72]
Metis
Jupiter XVI
21.5±2  119.893 moon of Jupiter [102] · [167]
Ophelia
Uranus VII
21.4±4 moon of Uranus [5]
Lysithea
Jupiter X
21.1±0.35 moon of Jupiter [153]
Caliban
Uranus XVI
21+10
−6
moon of Uranus [105]
Laomedeia
Neptune XII
 21 moon of Neptune [5]
Cordelia
Uranus VI
20.1±3 moon of Uranus [5]
Psamathe
Neptune X
 20 moon of Neptune [5]

From 1 to 19 km

This list contains some examples of Solar System objects between 1 and 19 km in radius. This is a common size for asteroids, comets and irregular moons.

Body[note 1] Image Radius[note 2]
(km)
Mass
(1015 kg)
Type – notes Refs[note 6]
r · M
Urda
167
19.968±0.132 belt asteroid type S [168]
Hydra
Pluto III
19.65 48±42 moon of Pluto [169] · [170]
Siarnaq
Saturn XXIX
19.65±2.95 moon of Saturn [153]
Koronis
158
19.513±0.231 belt asteroid type S [171]
Nix
Pluto II
19.017 45±40 moon of Pluto [169] · [170]
Ganymed
1036
18.838±0.199  167±318 Amor asteroid type S [84] · [72]
Okyrhoe
52872
18±0.6 centaur [172]
Helene
Saturn XII
17.6±0.4 moon of Saturn; Dione trojan (L4) [26]
Sinope
Jupiter IX
17.5±0.3 moon of Jupiter [153]
Hippocamp
Neptune XIV
17.4±1  50 moon of Neptune [91] · [91]
Leucus
11351
17.078±0.323 Jupiter trojan (L4) type D [84]
Stephano
Uranus XX
 16 moon of Uranus [5]
Arrokoth
486958
15.85±0.25 cubewano; contact binary [173]
Ida
243
15.7 42±6 belt asteroid type S; binary [174] · [175]
Atlas
Saturn XV
15.1±0.9 6.6 moon of Saturn [26] · [26]
Ananke
Jupiter XII
14.55±0.3 moon of Jupiter [153]
Albiorix
Saturn XXVI
14.3±2.7 moon of Saturn [153]
Pan
Saturn XVIII
14.1±1.3 4.95 moon of Saturn [26] · [176]
Linus
Kalliope I
14±1  60 asteroid moon of 22 Kalliope [101] · [177]
Dioretsa
20461
14±3 centaur; damocloid [178]
Perdita
Uranus XXV
13±1 moon of Uranus [5]
Telesto
Saturn XIII
12.4±0.4 moon of Saturn; Tethys trojan (L4) [26]
Mab
Uranus XXVI
12±1 moon of Uranus [5]
Phobos
Mars I
11.267 10.659 moon of Mars [179] · [180]
Paaliaq
Saturn XX
 11 moon of Saturn [5]
Francisco
Uranus XXII
 11 moon of Uranus [5]
Leda
Jupiter XIII
10.75±0.85 moon of Jupiter [153]
Calypso
Saturn XIV
10.7±0.7 moons of Saturn; Tethys trojan (L5) [26]
Polymele
15094
10.548±0.068 Jupiter trojan (L4) type P [85]
Margaret
Uranus XXIII
 10 moon of Uranus [5]
Ferdinand
Uranus XXIV
 10 moon of Uranus [5]
Cupid
Uranus XXVII
9±1 moon of Uranus [5]
Ymir
Saturn XIX
 9 moon of Saturn [5]
Trinculo
Uranus XXI
 9 moon of Uranus [5]
Eros
433
8.42±0.02 6.687±0.003 Amor asteroid type S [181] · [181]
Adrastea
Jupiter XV
8.2±2 moon of Jupiter [5]
Kiviuq
Saturn XXIV
 8 moon of Saturn [5]
Tarvos
Saturn XXI
 7.5 moon of Saturn [5]
Kerberos
Pluto IV
 6.333 16±9 moon of Pluto [182] · [183]
Gaspra
951
6.266 20–30 belt asteroid type S [184] · [185]
Deimos
Mars II
6.2±0.18 1.476 moon of Mars [5] · [186]
Skamandrios
Hektor I
6±1.5 asteroid moon of 624 Hektor [82]
Ijiraq
Saturn XXII
 6 moon of Saturn [5]
Halley's Comet
1P
5.75 0.22 comet [187] · [188]
Styx
Pluto V
 5.5  7.65 moon of Pluto [182] · [183]
Romulus
Sylvia I
5.4±2.8 asteroid moon of 87 Sylvia [189]
Masursky
2685
5.372±0.085 belt asteroid type S [190]
Erriapus
Saturn XXVIII
 5 moon of Saturn [5]
Callirrhoe
Jupiter XVII
4.8±0.65 moon of Jupiter [153]
Alexhelios
Kleopatra I
4.45±0.8 asteroid moon of 216 Kleopatra [191]
Esclangona
1509
4.085±0.3 inner belt asteroid type S; binary [192]
Themisto
Jupiter XVIII
 4 moon of Jupiter [5]
Daphnis
Saturn XXXV
3.8±0.8 0.077±0.015 moon of Saturn [26] · [26]
Petit-Prince
Eugenia I
3.5±1 asteroid moon of 45 Eugenia [89]
Praxidike
Jupiter XXVII
3.5±0.35 moon of Jupiter [153]
Bestla
Saturn XXXIX
 3.5 moon of Saturn [5]
Remus
Sylvia II
 3.5 asteroid moon of 87 Sylvia [189]
Kalyke
Jupiter XXIII
3.45±0.65 moon of Jupiter [153]
Cleoselene
Kleopatra II
3.45±0.8 asteroid moon of 216 Kleopatra [191]
S/2019 (31) 1
Euphrosyne I
3.35±1.2 asteroid moon of 31 Euphrosyne [193]
Tempel 1
9P
3±0.1 Jupiter-family comet; Deep Impact flyby and impacted [194]
Phaethon
3200
2.9 Apollo asteroid type F [195]
1999 JM8
53319
2.7±0.6 Apollo asteroid type X [196]
Borrelly
19P
2.66 Jupiter-family comet [197]
Šteins
2867
2.58±0.084 belt asteroid type E [84]
Atira
163693
2.4±0.25 Atira asteroid type S; binary [198]
Annefrank
5535
2.4 belt asteroid type S [199]
Balam
3749
2.332±0.107 0.51±0.02 belt asteroid type S; trinary [200] · [201]
Pallene
Saturn XXXIII
2.22±0.07 moon of Saturn [202]
Florence
3122
2.201±0.015 0.079±0.002 Amor asteroid type S; trinary [73] · [203]
Wild 2
81P
2.133 Jupiter family comet [204]
Litva
2577
2.115 Mars-crosser type EU; trinary [205]
Churyumov–Gerasimenko
67P
2 0.00998 Jupiter-family comet [206] · [207]
Donaldjohanson
52246
1.948±0.007 belt asteroid type C [208]
Cuno
4183
1.826±0.051 Apollo asteroid type S/type Q [209]
1986 DA
6178
1.575 Amor asteroid type M [210]
Pichi üñëm
Alauda I
1.55±0.45 asteroid moon of 702 Alauda [211]
Toutatis
4179
1.516 0.0505 Apollo asteroid type S [212] · [212]
Methone
Saturn XXXII
1.45±0.03 moon of Saturn [202]
1998 QE2
285263
1.375 Amor asteroid type S; binary [213]
Polydeuces
Saturn XXXIV
1.3±0.4 moon of Saturn; Dione trojan (L5) [26]
2001 SN263
153591
1.315±0.2 0.00951±0.00013 Amor asteroid type C; trinary [214] · [215]
S/2003 (1509) 1
Esclangona I
1.285 asteroid moon of 1509 Esclangona [216]
APL
132524
 1.25 belt asteroid type S [217]
Camillo
3752
1.153±0.044 Apollo asteroid type S [73]
Cruithne
3753
1.036±0.053 Aten asteroid type Q; quasi-satellite of Earth [218]

Below 1 km

This list contains examples of objects below 1 km in radius. That means that irregular bodies can have a longer chord in some directions, hence the mean radius averages out.

In the asteroid belt alone there are estimated to be between 1.1 and 1.9 million objects with a radius above 0.5 km,[219] many of which are in the range 0.5–1.0 km. Countless more have a radius below 0.5 km.

Very few objects in this size range have been explored or even imaged. The exceptions are objects that have been visited by a probe, or have passed close enough to Earth to be imaged. Radius is by mean geometric radius. Number of digits not an endorsement of significant figures. Mass scale shifts from × 1015 to 109 kg, which is equivalent to one billion kg or 1012 grams (Teragram – Tg).

Currently most of the objects of mass between 109 kg to 1012 kg (less than 1000 teragrams (Tg)) listed here are near-Earth asteroids (NEAs). The Aten asteroid 1994 WR12 has less mass than the Great Pyramid of Giza, 5.9 × 109 kg.

For more about very small objects in the Solar System, see meteoroid, micrometeoroid, and interplanetary dust cloud. (See also Visited/imaged bodies.)

Body[note 1] Image Radius[note 2]
(m)
Mass
(109 kg)
Type – notes Refs[note 6]
r · M
Ra-Shalom
2100
990±25 Aten asteroid type C [81]
Geographos
1620
980±30 Apollo asteroid type S [84]
Midas
1981
975±35 Apollo asteroid type S [81]
Mithra
4486
924.5±11 Apollo asteroid type S [73]
1998 OH
12538
831.5±164.5 Apollo asteroid type S [73]
Tantalus
2102
824.5±22.5 Apollo asteroid type Q [220]
Braille
9969
820 Mars-crosser type Q [221]
2005 GO21
308242
780 Aten asteroid type S [222]
Apollo
1862
 750 Apollo asteroid type Q [223]
1999 JD6
85989
731±10.5 Aten asteroid type K; contact binary [224]
Icarus
1566
730 Apollo asteroid type S [225]
Dactyl
Ida I
700 asteroid moon of 243 Ida [226]
Castalia
4769
700 Apollo asteroid type S; contact binary [227]
2007 PA8
214869
675±70 Apollo asteroid type Q [228]
Moshup
66391
658.5±20 2490±54 Aten asteroid type S; binary [229] · [230]
1950 DA
29075
653  2000 Apollo asteroid type S [231] · [232]
2006 HY51
394130
609±114 Apollo asteroid [233]
Hartley 2
103P
570±80  300 Jupiter-family comet [234] · [234]
2003 SD220
163899
515 Aten asteroid type S [235]
Nyx
3908
500±75 Amor asteroid type V [236]
2001 WN5
153814
466±5.5 Apollo asteroid [237]
2017 YE5
450±25 Apollo asteroid type S; binary [238]
Ryugu
162173
432.5±7.5  450 Apollo asteroid type Cg [239] · [240]
1997 AE12
162058
423.5±6.5 Amor asteroid type S [241]
2014 JO25
409 Apollo asteroid type S; contact binary [242]
Hermes
69230
400±50 Apollo asteroid type Sq [243]
Didymos
65803
390±4 527 Apollo asteroid type Xk; binary [244] · [245]
Aten
2062
365±15 Aten asteroid type S [84]
Aegaeon
Saturn LIII
330±60 moon of Saturn [202]
2015 TB145
325±15 Apollo asteroid type S [246]
1994 CC
136617
310±30 266±32.9 Apollo asteroid type Sq; trinary [247] · [248]
2001 WR1
172034
315.5±9 Amor asteroid type S [249]
Golevka
6489
265±15 Apollo asteroid type Q [250]
Bennu
101955
262.5±37.5 78±9 Apollo asteroid type B [251] · [252]
2000 WO107
153201
255±41.5 Aten asteroid type X [253]
2002 CU11
163132
230±8.5 Apollo asteroid [254]
Squannit
1999 KW4 I
225.5±13.5 asteroid moon of 66391 Moshup [230]
2014 HQ124
204.5±84 Aten asteroid type S [84]
2013 YP139 201±13 Apollo asteroid [255]
2008 EV5
341843
200±7 Aten asteroid type X/type C [73]
2006 DP14
388188
 200 Apollo asteroid type S; contact binary [256]
1988 EG
6037
199.5±1.35 Apollo asteroid type S [257]
2010 TK7
189.5±61.5 Aten asteroid; Earth trojan (L4) [258]
2006 SU49
292220
 188.5  73 Apollo asteroid [259] · [259]
2005 YU55
308635
180±20 Apollo asteroid type C [260]
2010 SO16 178.5±63 Apollo asteroid; co-orbital with Earth [255]
Itokawa
25143
173 35.1±1.05 Apollo asteroid type S [261] · [261]
Apophis
99942
162.5±7.5  61 Aten asteroid type Sq [262] · [263]
S/2009 S 1
 150 moon of Saturn [264]
2005 WK4
142 Apollo asteroid type S [265]
2004 BL86
357439
131.5±13 Apollo asteroid type V; binary [266]
2007 TU24
125 Apollo asteroid type S [267]
2002 VE68  118 Aten asteroid type X; co-orbital with Venus [268]
2011 UW158
436724
110±20 Apollo asteroid type S [269]
Dimorphos
Didymos I
85±15 asteroid moon of 65803 Didymos [245]
2017 BQ6
78 Apollo asteroid type S [270]
YORP
54509
61.8 Apollo asteroid type S [271]
Kamoʻoalewa
469219
41 Apollo asteroid type S; quasi-satellite of Earth [272]
Duende
367943
23.75 Aten asteroid type L [273]
1998 KY26
 15 Apollo asteroid type X [274]
2012 TC4
11.5 Apollo asteroid type E/type Xe [275]
2014 RC
 11 Apollo asteroid type Sq [276]
2010 RF12  3.5  0.0005 Apollo asteroid [277] · [277]
2011 MD
3+2
−1
Apollo asteroid/Amor asteroid type S [278]
2008 TC3
2.05 0.00008 Apollo asteroid type F/type M [279] · [279]
2008 TS26  0.49 Apollo asteroid [280]

Surface gravity

The surface gravity at the equator of a body can in most cases be accurately calculated using Newton's law of universal gravitation and centrifugal force.

The gravitational acceleration at the equator is given by Newton's law of universal gravitation. The formula that follows from this law is:

where

ag is the magnitude of the gravitational acceleration
G is the gravitational constant
m is the mass of the celestial body
r is the equatorial radius of the celestial body (if this varies significantly, the mean equatorial radius is used)

The magnitude of the outward acceleration due to centrifugal force is given by

where

T is the rotation period of the celestial body

The surface gravity at the equator is then given by:

See also

Notes

  1. Radius estimated using equatorial radius and assuming body is spherical
  2. Radius has been determined by various methods, such as optical (Hubble), thermal (Spitzer), or direct imaging via spacecraft
  3. Radius estimated by using three radii and assuming body is spheroid
  4. Best fit, assuming Haumea is in hydrostatic equilibrium
  5. Calculated in Wolfram Alpha using semi axes of 1050 × 840 × 537 (Ellipsoid volume: 1.98395×10^9 km³)
  6. The mass estimate is based on the assumed density of 1.2 g/cm³, and a volume of 3.5 ×106 km³ obtained from a detailed shape model in Stooke (1994).[92]
  1. Name of body, including alternative names using Roman numerals to designate moons (such as "Saturn I" for Mimas), and numbers to designate minor planets
  2. Mean radius including uncertainties
  3. Given as surface gravity (1 bar for gaseous planets)
  4. Ranking by radius and mass. Bodies under 500km in radius cannot be meaningfully ranked, as there are a number of known TNOs that may be in this range.
  5. Figures from default source Johnston's Archive—List of Known Trans-Neptunian Objects,[28] if otherwise not mentioned in the References column
  6. Reference column specifically for radius (r) and mass (M) citations

References

  1. Brown, M. "The Dwarf Planets". Caltech. Archived from the original on 2011-01-16. Retrieved 2008-09-25.
  2. "Iapetus' peerless equatorial ridge". The Planetary Society. Retrieved 2020-01-04.
  3. "Gǃkúnǁ'hòmdímà and Gǃò'é ǃhú". .lowell.edu. Retrieved 2020-01-04.
  4. Britt, D. T.; Consolmagno, G. J.; Merline, W. J. (2006). "Small Body Density and Porosity: New Data, New Insights" (PDF). Lunar and Planetary Science XXXVII. Archived from the original (PDF) on 2008-12-17. Retrieved 2008-12-16.
  5. "Planetary Satellite Physical Parameters". JPL (Solar System Dynamics). 2008-10-24. Retrieved 2008-12-16.
  6. Williams, D. R. (2007-11-23). "Uranian Satellite Fact Sheet". NASA (National Space Science Data Center). Archived from the original on 2010-01-05. Retrieved 2008-12-12.
  7. Brown, Michael E. "How many dwarf planets are there in the outer solar system?". California Institute of Technology. Retrieved 28 April 2019.
  8. Park, R. S.; Konopliv, A. S.; Bills, B. G.; Rambaux, N.; Castillo-Rogez, J. C.; Raymond, C. A.; Vaughan, A. T.; Ermakov, A. I.; Zuber, M. T.; Fu, R. R.; Toplis, M. J.; Russell, C. T.; Nathues, A.; Preusker, F. (2016). "A partially differentiated interior for (1) Ceres deduced from its gravity field and shape". Nature. 537 (7621): 515–517. Bibcode:2016Natur.537..515P. doi:10.1038/nature18955. PMID 27487219. S2CID 4459985.
  9. "Iapetus' peerless equatorial ridge".
  10. "Uranus Fact Sheet".
  11. NASA/JPL, Our Sun, by the numbers Accessed 2020 Oct 22
  12. NASA/JPL Planets and Pluto: Physical Characteristics Last updated 2020-May-29
  13. Planetary Satellite Physical Parameters
  14. Moon Fact Sheet
  15. Sicardy, B.; et al. (2011). "Size, density, albedo and atmosphere limit of dwarf planet Eris from a stellar occultation" (PDF). European Planetary Science Congress Abstracts. 6: 137. Bibcode:2011epsc.conf..137S. Retrieved 2011-09-14.
  16. Brown, Michael E.; Schaller, Emily L. (15 June 2007). "The Mass of Dwarf Planet Eris". Science. 316 (5831): 1585. Bibcode:2007Sci...316.1585B. doi:10.1126/science.1139415. PMID 17569855. S2CID 21468196.
  17. Dunham, E. T.; Desch, S. J.; Probst, L. (April 2019). "Haumea's Shape, Composition, and Internal Structure". The Astrophysical Journal. 877 (1): 11. arXiv:1904.00522. Bibcode:2019ApJ...877...41D. doi:10.3847/1538-4357/ab13b3. S2CID 90262114.
  18. Ragozzine, D.; Brown, M. E. (2009). "Orbits and Masses of the Satellites of the Dwarf Planet Haumea (2003 EL61)". The Astronomical Journal. 137 (6): 4766–4776. arXiv:0903.4213. Bibcode:2009AJ....137.4766R. doi:10.1088/0004-6256/137/6/4766. S2CID 15310444.
  19. M.E. Brown (2013). "On the size, shape, and density of dwarf planet Makemake". The Astrophysical Journal Letters. 767 (1): L7(5pp). arXiv:1304.1041. Bibcode:2013ApJ...767L...7B. doi:10.1088/2041-8205/767/1/L7. S2CID 12937717.
  20. Kiss, Csaba; Marton, Gabor; Parker, Alex H.; Grundy, Will; Farkas-Takacs, Aniko; Stansberry, John; Pal, Andras; Muller, Thomas; Noll, Keith S.; Schwamb, Megan E.; Barr, Amy C.; Young, Leslie A.; Vinko, Jozsef (2019). "The mass and density of the dwarf planet (225088) 2007 OR10". Icarus. 334: 3–10. arXiv:1903.05439. Bibcode:2018DPS....5031102K. doi:10.1016/j.icarus.2019.03.013. S2CID 119370310.
    Initial publication at the American Astronomical Society DPS meeting #50, with the publication ID 311.02
  21. Braga-Ribas, F.; Sicardy, B.; Ortiz, J. L.; Lellouch, E.; Tancredi, G.; Lecacheux, J.; et al. (August 2013). "The Size, Shape, Albedo, Density, and Atmospheric Limit of Transneptunian Object (50000) Quaoar from Multi-chord Stellar Occultations". The Astrophysical Journal. 773 (1): 13. Bibcode:2013ApJ...773...26B. doi:10.1088/0004-637X/773/1/26. hdl:11336/1641.
  22. Roatsch Jaumann et al. 2009, p. 765, Tables 24.1–2
  23. "Agenda - NASA Exploration Science Forum 2015". Archived from the original on 2015-07-24. Retrieved 2015-07-25.
  24. Rayman, M. D. (28 May 2015). "Dawn Journal, May 28, 2015". Jet Propulsion Laboratory. Archived from the original on 30 May 2015. Retrieved 23 July 2015.
  25. Grundy, W. M.; Noll, K. S.; Roe, H. G.; Buie, M. W.; Porter, S. B.; Parker, A. H.; Nesvorný, D.; Benecchi, S. D.; Stephens, D. C.; Trujillo, C. A. (2019). "Mutual Orbit Orientations of Transneptunian Binaries" (PDF). Icarus. 334: 62–78. Bibcode:2019Icar..334...62G. doi:10.1016/j.icarus.2019.03.035. ISSN 0019-1035.
  26. Thomas, P. C. (July 2010). "Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission" (PDF). Icarus. 208 (1): 395–401. Bibcode:2010Icar..208..395T. doi:10.1016/j.icarus.2010.01.025.
  27. Grundy, W.M.; Noll, K.S.; Buie, M.W.; Benecchi, S.D.; Ragozzine, D.; Roe, H.G. (2019). "The Mutual Orbit, Mass, and Density of Transneptunian Binary Gǃkúnǁʼhòmdímà ((229762) 2007 UK126)". Icarus. 334: 30–38. doi:10.1016/j.icarus.2018.12.037.
  28. Wm. Robert Johnston (25 May 2019). "List of Known Trans-Neptunian Objects". Johnston's Archive. Retrieved 31 May 2019.
  29. "2020/08/08 - 307261 - 2002 MS4 - 4UC419-096262". euraster.net. Euraster. 16 August 2020. Retrieved 18 August 2020.
  30. Vilenius, E.; et al. (2014). ""TNOs are Cool": A survey of the trans-Neptunian region X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations". Astronomy & Astrophysics. 564: A35. arXiv:1403.6309. Bibcode:2014A&A...564A..35V. doi:10.1051/0004-6361/201322416. S2CID 118513049.
  31. Souami, D.; Braga-Ribas, F.; Sicardy, B.; Morgado, B.; Ortiz, J. L.; Desmars, J.; et al. (August 2020). "A multi-chord stellar occultation by the large trans-Neptunian object (174567) Varda". arXiv:2008.04818 [astro-ph.EP].
  32. Sheppard, Scott; Fernandez, Yanga; Moullet, Arielle (6 September 2018). "The Albedos, Sizes, Colors and Satellites of Dwarf Planets Compared with Newly Measured Dwarf Planet 2013 FY27". The Astronomical Journal. 156 (6): 270. arXiv:1809.02184. Bibcode:2018AJ....156..270S. doi:10.3847/1538-3881/aae92a. S2CID 119522310.
  33. Dias-Oliveira, A.; Sicardy, B.; Ortiz, J. L.; Braga-Ribas, F.; Leiva, R.; Vieira-Martins, R.; et al. (July 2017). "Study of the Plutino Object (208996) 2003 AZ84 from Stellar Occultations: Size, Shape, and Topographic Features". The Astronomical Journal. 154 (1): 13. arXiv:1705.10895. Bibcode:2017AJ....154...22D. doi:10.3847/1538-3881/aa74e9. S2CID 119098862.
  34. Santos-Sanz, P.; et al. (2012). ""TNOs are Cool": A Survey of the Transneptunian Region IV. Size/albedo characterization of 15 scattered disk and detached objects observed with Herschel Space Observatory-PACS". Astronomy & Astrophysics. 541: A92. arXiv:1202.1481. Bibcode:2012A&A...541A..92S. doi:10.1051/0004-6361/201118541. S2CID 118600525.
  35. Vilenius, E.; Kiss, C.; Mommert, M.; et al. (2012). ""TNOs are Cool": A survey of the trans-Neptunian region VI. Herschel/PACS observations and thermal modeling of 19 classical Kuiper belt objects". Astronomy & Astrophysics. 541: A94. arXiv:1204.0697. Bibcode:2012A&A...541A..94V. doi:10.1051/0004-6361/201118743. S2CID 54222700.
  36. Lorenzi, V.; Pinilla-Alonso, N.; Licandro, J. P.; Dalle Ore, C. M.; Emery (24 January 2014). "Rotationally resolved spectroscopy of (20000) Varuna in the near-infrared". Astronomy & Astrophysics. 562: A85. arXiv:1401.5962. Bibcode:2014A&A...562A..85L. doi:10.1051/0004-6361/201322251. S2CID 119157466. cited data from: Lellouch et al., 2013, of estimated diameter of 668 (+154,−86) km
  37. Lacerda, Pedro; Jewitt, David (2006). "Densities of Solar System Objects from their Rotational Lightcurves". The Astronomical Journal. 133 (4): 1393. arXiv:astro-ph/0612237. Bibcode:2007AJ....133.1393L. doi:10.1086/511772. S2CID 17735600.
  38. M.E. Brown (4 November 2013). "The density of mid-sized Kuiper belt object 2002 UX25 and the formation of the dwarf planets". The Astrophysical Journal. 778 (2): L34. arXiv:1311.0553. Bibcode:2013ApJ...778L..34B. doi:10.1088/2041-8205/778/2/L34. S2CID 17839077.
  39. Lakdawalla, Emily (26 March 2014). "A second Sedna! What does it mean?". Planetary Society blogs. The Planetary Society.
  40. Benedetti-Rossi, G.; Sicardy, B.; Buie, M. W.; Ortiz, J. L.; Vieira-Martins, R.; Keller, J. M.; et al. (December 2016). "Results from the 2014 November 15th Multi-chord Stellar Occultation by the TNO (229762) 2007 UK126". The Astronomical Journal. 152 (6): 11. arXiv:1608.01030. Bibcode:2016AJ....152..156B. doi:10.3847/0004-6256/152/6/156. S2CID 119249473.
  41. Gerdes, David W.; Sako, Masao; Hamilton, Stephanie; Zhang, Ke; Khain, Tali; Becker, Juliette C.; et al. (2017). "Discovery and Physical Characterization of a Large Scattered Disk Object at 92 AU". The Astrophysical Journal Letters. 839 (1): L15. arXiv:1702.00731. Bibcode:2017ApJ...839L..15G. doi:10.3847/2041-8213/aa64d8. S2CID 35694455.
  42. Bannister, Michele T.; Alexandersen, Mike; Benecchi, Susan D.; Chen, Ying-Tung; Delsanti, Audrey; Fraser, Wesley C.; et al. (December 2016). "OSSOS. IV. Discovery of a Dwarf Planet Candidate in the 9:2 Resonance with Neptune". The Astronomical Journal. 152 (6): 8. arXiv:1607.06970v2. Bibcode:2016AJ....152..212B. doi:10.3847/0004-6256/152/6/212. S2CID 55207350.
  43. Fernández-Valenzuela, Estela; Ortiz, Jose Luis; Duffard, René (2015). "2008 OG19: A highly elongated Trans-Neptunian Object". Monthly Notices of the Royal Astronomical Society. 456 (3): 2354–2360. arXiv:1511.06584. Bibcode:2016MNRAS.456.2354F. doi:10.1093/mnras/stv2739. S2CID 73720001.
  44. Lellouch, E.; Santos-Sanz, P.; Lacerda, P.; Mommert, M.; Duffard, R.; Ortiz, J. L.; et al. (September 2013). ""TNOs are Cool": A survey of the trans-Neptunian region. IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations" (PDF). Astronomy and Astrophysics. 557: 19. arXiv:1202.3657. Bibcode:2013A&A...557A..60L. doi:10.1051/0004-6361/201322047. Retrieved 27 April 2019.
  45. Pál, A.; et al. (2015). "Pushing the Limits: K2 Observations of the Trans-Neptunian Objects 2002 GV31 and (278361) 2007 JJ43". The Astrophysical Journal Letters. 804 (2). L45. arXiv:1504.03671. Bibcode:2015ApJ...804L..45P. doi:10.1088/2041-8205/804/2/L45. S2CID 117489359.
  46. Loader, B.; Hanna, W. (25 February 2019). "(523692) 2014 EZ51, 2019 February 25 occultation". occultations.org.nz. Retrieved 5 January 2020.
  47. "Asteroid (78799) 2002 XW93". Small Bodies Data Ferret. Retrieved 17 November 2018.
  48. Mommert, Michael; Harris, A. W.; Kiss, C.; Pál, A.; Santos-Sanz, P.; Stansberry, J.; Delsanti, A.; et al. (May 2012). "TNOs are cool: A survey of the trans-Neptunian region—V. Physical characterization of 18 Plutinos using Herschel-PACS observations". Astronomy & Astrophysics. 541: A93. arXiv:1202.3657. Bibcode:2012A&A...541A..93M. doi:10.1051/0004-6361/201118562. S2CID 119253817.
  49. Benedetti-Rossi, Gustavo; Santos-Sanz, P.; Ortiz, J. L.; Assafin, M.; Sicardy, B.; Morales, N. (2019). "The trans-Neptunian object (84922) 2003 VS2 through stellar occultations". The Astronomical Journal. 158: 159. arXiv:1908.06645. doi:10.3847/1538-3881/ab3b05. S2CID 201070151.
  50. Russell, C. T.; et al. (2012). "Dawn at Vesta: Testing the Protoplanetary Paradigm". Science. 336 (6082): 684–686. Bibcode:2012Sci...336..684R. doi:10.1126/science.1219381. PMID 22582253. S2CID 206540168.
  51. Marsset, M., Brož, M., Vernazza, P. et al. The violent collisional history of aqueously evolved (2) Pallas. Nat Astron 4, 569–576 (2020). https://doi.org/10.1038/s41550-019-1007-5
  52. Roatsch, T.; Jaumann, R.; Stephan, K.; Thomas, P. C. (2009). "Cartographic Mapping of the Icy Satellites Using ISS and VIMS Data". Saturn from Cassini-Huygens. pp. 763–781. doi:10.1007/978-1-4020-9217-6_24. ISBN 978-1-4020-9216-9.
  53. Jacobson, R. A.; Antreasian, P. G.; Bordi, J. J.; Criddle, K. E.; Ionasescu, R.; Jones, J. B.; Mackenzie, R. A.; et al. (December 2006). "The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data". The Astronomical Journal. 132 (6): 2520–2526. Bibcode:2006AJ....132.2520J. doi:10.1086/508812.
  54. Ortiz, J. L.; Santos-Sanz, P.; Sicardy, B.; Benedetti-Rossi, G.; Duffard, E.; Morales, N. (18 May 2020). "The large Trans-Neptunian Object 2002 TC302 from combined stellar occultation, photometry and astrometry data". Astronomy & Astrophysics. A134: 639. arXiv:2005.08881. doi:10.1051/0004-6361/202038046. S2CID 218673812.
  55. Thomas, P. C. (1988). "Radii, shapes, and topography of the satellites of Uranus from limb coordinates". Icarus. 73 (3): 427–441. Bibcode:1988Icar...73..427T. doi:10.1016/0019-1035(88)90054-1.
  56. Jacobson, R. A.; Campbell, J. K.; Taylor, A. H.; Synnott, S. P. (June 1992). "The masses of Uranus and its major satellites from Voyager tracking data and earth-based Uranian satellite data". The Astronomical Journal. 103 (6): 2068–2078. Bibcode:1992AJ....103.2068J. doi:10.1086/116211.
  57. Pál, A.; Kiss, C.; Müller, T. G.; Santos-Sanz, P.; Vilenius, E.; Szalai, N.; Mommert, M.; et al. (May 2012). ""TNOs are Cool": A survey of the trans-Neptunian region - VII. Size and surface characteristics of (90377) Sedna and 2010 EK139". Astronomy & Astrophysics. 541: L6. arXiv:1204.0899. Bibcode:2012A&A...541L...6P. doi:10.1051/0004-6361/201218874. S2CID 119117186.
  58. Stansberry, John; Grundy, Will; Brown, Mike; Cruikshank, Dale; Spencer, John; Trilling, David; Margot, Jean-Luc (2008). "Physical Properties of Kuiper Belt and Centaur Objects: Constraints from the Spitzer Space Telescope" (PDF). The Solar System Beyond Neptune. University of Arizona Press. pp. 161–179. arXiv:astro-ph/0702538. Bibcode:2008ssbn.book..161S. ISBN 978-0-8165-2755-7.
  59. Sickafoose, A. A.; Bosh, A. S.; Levine, S. E.; Zuluaga, C. A.; Genade, A.; Schindler, K.; Lister, T. A.; Person, M. J. (February 2019). "A stellar occultation by Vanth, a satellite of (90482) Orcus". Icarus. 319: 657–668. arXiv:1810.08977. Bibcode:2019Icar..319..657S. doi:10.1016/j.icarus.2018.10.016. S2CID 119099266.
  60. Vernazza, P.; Jorda, L.; Ševeček, P.; Brož, M.; Viikinkoski, M.; Hanuš, J.; et al. (2020). "A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea" (PDF). Nature Astronomy. 273 (2): 136–141. Bibcode:2020NatAs...4..136V. doi:10.1038/s41550-019-0915-8. hdl:10045/103308. S2CID 209938346.
  61. Alvarez-Candal, A.; Ortiz, J. L.; Morales, N.; Jiménez-Teja, Y.; Duffard, R.; Sicardy, B.; et al. (November 2014). "Stellar occultation by (119951) 2002 KX14 on April 26, 2012" (PDF). Astronomy & Astrophysics. 571 (A48): 8. Bibcode:2014A&A...571A..48A. doi:10.1051/0004-6361/201424648. Retrieved 14 October 2019.
  62. Thirouin, A.; Knoll, K. S.; Ortiz, J. L.; Morales, N. (September 2014). "Rotational properties of the binary and non-binary populations in the Trans-Neptunian belt". Astronomy & Astrophysics. 569 (A3): 20. arXiv:1407.1214. Bibcode:2014A&A...569A...3T. doi:10.1051/0004-6361/201423567. S2CID 119244456.
  63. "JPL definition of Main-belt Asteroid (MBA)". JPL Solar System Dynamics. Retrieved 12 March 2009.
  64. Thirouin, A.; Ortiz, J. L.; Duffard, R.; Santos-Sanz, P.; Aceituno, F. J.; Morales, N. (2010). "Short-term variability of a sample of 29 trans-Neptunian objects and Centaurs". Astronomy & Astrophysics. 522: A93. arXiv:1004.4841. Bibcode:2010A&A...522A..93T. doi:10.1051/0004-6361/200912340. S2CID 54039561.
  65. Kiss, C.; Pál, A.; Farkas-Takács, A. I.; Szabó, G. M.; Szabó, R.; Kiss, L. L.; et al. (April 2016). "Nereid from space: Rotation, size and shape analysis from K2, Herschel and Spitzer observations" (PDF). Monthly Notices of the Royal Astronomical Society. 457 (3): 2908–2917. arXiv:1601.02395. Bibcode:2016MNRAS.457.2908K. doi:10.1093/mnras/stw081. S2CID 54602372.
  66. Johnston, Wm. Robert (27 May 2019). "(119979) 2002 WC19". Johnston's Archive. Retrieved 14 June 2019.
  67. Hanuš, J.; Vernazza, P.; Viikinkoski, M.; Ferrais, M.; Rambaux, N.; Podlewska-Gaca, E.; et al. (2020). "(704) Interamnia: A transitional object between a dwarf planet and a typical irregular-shaped minor body". Astronomy & Astrophysics. 633: A65. arXiv:1911.13049. Bibcode:2020A&A...633A..65H. doi:10.1051/0004-6361/201936639. S2CID 208512707.
  68. Johnston, Wm. Robert (31 January 2015). "(450894) 2008 BT18". Johnston's Archive. Retrieved 28 April 2019.
  69. Masiero, Joseph R.; Mainzer, A. K.; Grav, T.; Bauer, J. M.; Cutri, R. M.; Nugent, C.; Cabrera, M. S. (10 October 2012). "Preliminary Analysis of WISE/NEOWISE 3-Band Cryogenic and Post-cryogenic Observations of Main Belt Asteroids". The Astrophysical Journal Letters. 759 (1): L8. arXiv:1209.5794. Bibcode:2012ApJ...759L...8M. doi:10.1088/2041-8205/759/1/L8. S2CID 46350317.
  70. Carry, B. (December 2012). "Density of asteroids". Planetary and Space Science. 73 (1): 98–118. arXiv:1203.4336. Bibcode:2012P&SS...73...98C. doi:10.1016/j.pss.2012.03.009. S2CID 119226456.
  71. Mainzer, A.; Grav, T.; Masiero, J.; Hand, E.; Bauer, J.; Tholen, D. (November 2011). "NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results". The Astrophysical Journal. 741 (2): 25. arXiv:1109.6407. Bibcode:2011ApJ...741...90M. doi:10.1088/0004-637X/741/2/90. S2CID 118700974.
  72. Elliot, J. L.; Person, M. J.; Zuluaga, C. A.; Bosh, A. S.; Adams, E. R.; Brothers, T. C.; et al. (2010). "Size and albedo of Kuiper belt object 55636 from a stellar occultation" (PDF). Nature. 465 (7300): 897–900. Bibcode:2010Natur.465..897E. doi:10.1038/nature09109. PMID 20559381. S2CID 4431420.
  73. Johnston, Wm. Robert (21 September 2014). "(87) Sylvia, Romulus, and Remus". Retrieved 28 April 2019.
  74. Marchis, Franck; Decamps, Pascal; Hestroffer, Daniel; Berthier, Jérome (2005). "Discovery of the triple asteroidal system 87 Sylvia". Nature. 436 (7052): 822–824. Bibcode:2005Natur.436..822M. doi:10.1038/nature04018. PMID 16094362. S2CID 4412813.
  75. Johnston, Wm. Robert (20 September 2014). "(120347) Salacia and Actaea". Johnston's Archive. Retrieved 13 June 2019.
  76. Johnston, Wm. Robert (8 October 2017). "(47171) Lempo, Paha, and Hiisi". Johnston's Archive. Retrieved 10 June 2019.
  77. Johnston, Wm. Robert (21 September 2014). "(26308) 1998 SM165 and S/2001 (26308) 1". Johnston's Archive. Retrieved 28 April 2019.
  78. "LCDB Data for (10199) Chariklo". Asteroid Lightcurve Database (LCDB). Retrieved 28 April 2019.
  79. Usui, Fumihiko; Kuroda, Daisuke; Müller, Thomas G.; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi; et al. (October 2011). "Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey". Publications of the Astronomical Society of Japan. 63 (5): 1117–1138. Bibcode:2011PASJ...63.1117U. doi:10.1093/pasj/63.5.1117. Retrieved 30 April 2019.
  80. Marchis, F.; Durech, J.; Castillo-Rogez, J.; Vachier, F.; Cuk, M.; Berthier, J.; et al. (March 2014). "The Puzzling Mutual Orbit of the Binary Trojan Asteroid (624) Hektor". The Astrophysical Journal Letters. 783 (2): 6. arXiv:1402.7336. Bibcode:2014ApJ...783L..37M. doi:10.1088/2041-8205/783/2/L37. S2CID 19868908.
  81. Johnston, Wm. Robert (20 September 2014). "(79360) Sila-Nunam". Johnston's Archive. Retrieved 28 April 2019.
  82. Mainzer, A. K.; Bauer, J. M.; Cutri, R. M.; Grav, T.; Kramer, E. A.; Masiero, J. R.; et al. (June 2016). "NEOWISE Diameters and Albedos V1.0". NASA Planetary Data System: EAR–A–COMPIL–5–NEOWISEDIAM–V1.0. Bibcode:2016PDSS..247.....M. Retrieved 31 October 2018.
  83. Tedesco; et al. (2004). "Supplemental IRAS Minor Planet Survey (SIMPS)". IRAS-A-FPA-3-RDR-IMPS-V6.0. Planetary Data System. Archived from the original on 17 August 2009. Retrieved 29 December 2008.
  84. Grundy, W.M.; Stansberry, J.A.; Noll K.S.; Stephens, D.C.; et al. (2007). "The orbit, mass, size, albedo, and density of (65489) Ceto/Phorcys: A tidally-evolved binary Centaur". Icarus. 191 (1): 286–297. arXiv:0704.1523. Bibcode:2007Icar..191..286G. doi:10.1016/j.icarus.2007.04.004. S2CID 1532765.
  85. Ferrais et al. (2020) 'Asteroid (16) Psyche's primordial shape: A possible Jacobi ellipsoid?, Astronomy and Astrophysics 638, L15. https://doi.org/10.1051/0004-6361/202038100
  86. Hanuš, J.; Marsset, M.; Vernazza, P.; Viikinkoski, M.; Drouard, A.; Brož, M.; et al. (24 April 2019). "The shape of (7) Iris as evidence of an ancient large impact?". Astronomy & Astrophysics. 624 (A121): A121. arXiv:1902.09242. Bibcode:2018DPS....5040406H. doi:10.1051/0004-6361/201834541. S2CID 119089163.
  87. Wm. Robert Johnston (21 September 2014). "(45) Eugenia, Petit-Prince, and S/2004 (45) 1". Johnston's Archive. Retrieved 12 June 2019.
  88. Duffard, R.; Pinilla-Alonso, N.; Santos-Sanz, P.; Vilenius, E.; Ortiz, J. L.; Mueller, T.; et al. (April 2014). ""TNOs are Cool": A survey of the trans-Neptunian region. XI. A Herschel-PACS view of 16 Centaurs". Astronomy and Astrophysics. 564: 17. arXiv:1309.0946. Bibcode:2014A&A...564A..92D. doi:10.1051/0004-6361/201322377. S2CID 119177446.
  89. Showalter, M. R.; de Pater, I.; Lissauer, J. J.; French, R. S. (2019). "The seventh inner moon of Neptune" (PDF). Nature. 566 (7744): 350–353. Bibcode:2019Natur.566..350S. doi:10.1038/s41586-019-0909-9. PMC 6424524. PMID 30787452.
  90. Stooke, Philip J. (1994). "The surfaces of Larissa and Proteus". Earth, Moon, and Planets. 65 (1): 31–54. Bibcode:1994EM&P...65...31S. doi:10.1007/BF00572198. S2CID 121825800.
  91. Matter, Alexis; Marco, Delbo; Sebastiano, Ligori; Nicolas, Crouzet; Paolo, Tanga (2011). "Determination of physical properties of the asteroid (41) Daphne from interferometric observations in the thermal infrared". Icarus. 215 (1): 47–56. arXiv:1108.2616. Bibcode:2011Icar..215...47M. doi:10.1016/j.icarus.2011.07.012. S2CID 118674450.
  92. Johnston, Wm. Robert (21 September 2014). "(121) Hermione and S/2002 (121) 1 ("LaFayette")". Johnston's Archive. Retrieved 5 June 2019.
  93. Marchis, Franck; P. Descamps; J. Berthier; D. hestroffer; F. vachier; M. Baek; et al. (2008). "Main Belt Binary Asteroidal Systems With Eccentric Mutual Orbits". Icarus. 195 (1): 295–316. arXiv:0804.1385. Bibcode:2008Icar..195..295M. doi:10.1016/j.icarus.2007.12.010. S2CID 119244052.
  94. Johnston, Wm. Robert (20 September 2014). "(88611) Teharonhiawako and Sawiskera". Johnston's Archive. Retrieved 13 June 2019.
  95. Parker, A. H.; Buie, M. W.; Grundy, W. M.; Noll, K. S. (25 April 2016). "Discovery of a Makemakean Moon". The Astrophysical Journal. 825 (1): L9. arXiv:1604.07461. Bibcode:2016ApJ...825L...9P. doi:10.3847/2041-8205/825/1/L9. S2CID 119270442.
  96. Porco, C.C. (1991). "An Explanation for Neptune's Ring Arcs". Science. 253 (5023): 995–1001. Bibcode:1991Sci...253..995P. doi:10.1126/science.253.5023.995. PMID 17775342. S2CID 742763.
  97. Rojo, P.; Margot, J. L. (February 2011). "Mass and Density of the B-type Asteroid (702) Alauda". The Astrophysical Journal. 727 (2): 5. arXiv:1011.6577. Bibcode:2011ApJ...727...69R. doi:10.1088/0004-637X/727/2/69. S2CID 59449907.
  98. Emelyanov, N.V.; Archinal, B. A.; A'hearn, M. F.; et al. (2005). "The mass of Himalia from the perturbations on other satellites" (PDF). Astronomy and Astrophysics. 438 (3): L33–L36. Bibcode:2005A&A...438L..33E. doi:10.1051/0004-6361:200500143.
  99. Descamps, P.; Marchis, F.; et al. (2008). "New determination of the size and bulk density of the binary asteroid 22 Kalliope from observations of mutual eclipses". Icarus. 196 (2): 578–600. arXiv:0710.1471. Bibcode:2008Icar..196..578D. doi:10.1016/j.icarus.2008.03.014. S2CID 118437111.
  100. Thomas, P. C.; Burns, J. A.; Rossier, L.; Simonelli, D.; Veverka, J.; Chapman, C. R.; Klaasen, K.; Johnson, T. V.; Belton, M. J. S.; Galileo Solid State Imaging Team (September 1998). "The Small Inner Satellites of Jupiter". Icarus. 135 (1): 360–371. Bibcode:1998Icar..135..360T. doi:10.1006/icar.1998.5976.
  101. Anderson, J. D.; Johnson, T. V.; Schubert, G.; Asmar, S.; Jacobson, R. A.; Johnston, D.; Lau, E. L.; Lewis, G.; Moore, W. B.; Taylor, A.; Thomas, P. C.; Weinwurm, G. (27 May 2005). "Amalthea's Density is Less Than That of Water". Science. 308 (5726): 1291–1293. Bibcode:2005Sci...308.1291A. doi:10.1126/science.1110422. PMID 15919987. S2CID 924257.
  102. Karkoschka, Erich (2001). "Voyager's Eleventh Discovery of a Satellite of Uranus and Photometry and the First Size Measurements of Nine Satellites". Icarus. 151 (1): 69–77. Bibcode:2001Icar..151...69K. doi:10.1006/icar.2001.6597.
  103. Farkas-Takács, A.; Kiss, Cs.; Pál, A.; Molnár, L.; Szabó, Gy. M.; Hanyecz, O.; et al. (September 2017). "Properties of the Irregular Satellite System around Uranus Inferred from K2, Herschel, and Spitzer Observations". The Astronomical Journal. 154 (3): 13. arXiv:1706.06837. Bibcode:2017AJ....154..119F. doi:10.3847/1538-3881/aa8365. S2CID 118869078. 119.
  104. Rabinowitz, David L.; Benecchi, Susan D.; Grundy, William M.; Verbiscer, Anne J.; Thirouin, Audrey (November 2019). "The Complex Rotational Light Curve of (385446) Manwë-Thorondor, a Multi-Component Eclipsing System in the Kuiper Belt". arXiv:1911.08546 [astro-ph.EP].
  105. Johnston, Wm. Robert (21 September 2014). "(762) Pulcova". Johnston's Archive. Retrieved 10 June 2019.
  106. Johnston, Wm. Robert (31 January 2015). "(42355) Typhon and Echidna". Johnston's Archive. Retrieved 14 June 2019.
  107. Benecchi, S.D; Noll, K. S.; Grundy, W. M.; Levison, H. F. (2010). "(47171) 1999 TC36, A Transneptunian Triple". Icarus. 207 (2): 978–991. arXiv:0912.2074. Bibcode:2010Icar..207..978B. doi:10.1016/j.icarus.2009.12.017. S2CID 118430134.
  108. Pravec, P.; Harris, A. W.; Kusnirak, P.; Galad, A.; Hornoch, K. (2012). "Absolute Magnitudes of Asteroids and a Revision of Asteroid Albedo Estimates from WISE Thermal Observations". Icarus. 221 (1): 365–387. Bibcode:2012LPICo1667.6089P. doi:10.1016/j.icarus.2012.07.026.
  109. Ostro, Steven J.; Hudson, R. Scott; Nolan, Michael C.; Margot, Jean-Luc; Scheeres, Daniel J.; Campbell, Donald B.; et al. (May 2000). "Radar Observations of Asteroid 216 Kleopatra". Science. 288 (5467): 836–839. Bibcode:2000Sci...288..836O. doi:10.1126/science.288.5467.836. PMID 10797000. S2CID 7589001.
  110. Grundy, W. M.; Noll, K. S.; Nimmo, F.; Roe, H. G.; Buie, M. W.; Porter, S. B.; Benecchi, S. D.; Stephens, D. C.; Levison, H. F.; Stansberry, J. A. (2011). "Five new and three improved mutual orbits of transneptunian binaries" (PDF). Icarus. 213 (2): 678. arXiv:1103.2751. Bibcode:2011Icar..213..678G. doi:10.1016/j.icarus.2011.03.012. S2CID 9571163.
  111. Michalak, G. (2001). "Determination of asteroid masses". Astronomy & Astrophysics. 374 (2): 703–711. Bibcode:2001A&A...374..703M. doi:10.1051/0004-6361:20010731.
  112. "JPL Small-Body Database Browser: 28 Bellona" (2018-10-18 last obs). Retrieved 30 April 2019.
  113. "JPL Small-Body Database Browser: 78 Diana" (2018-10-22 last obs). Retrieved 2 May 2019.
  114. "JPL Small-Body Database Browser: 74 Galatea" (2018-05-22 last obs). Retrieved 2 May 2019.
  115. "JPL Small-Body Database Browser: 1867 Deiphobus (1971 EA)" (2018-06-21 last obs). Retrieved 2 May 2019.
  116. "JPL Small-Body Database Browser: 1172 Aneas (1930 UA)" (2018-07-03 last obs). Retrieved 1 May 2019.
  117. "JPL Small-Body Database Browser: 1437 Diomedes (1937 PB)" (2018-10-22 last obs). Retrieved 30 April 2019.
  118. "JPL Small-Body Database Browser: 81 Terpsichore" (2018-10-22 last obs). Retrieved 2 May 2019.
  119. "JPL Small-Body Database Browser: 12 Victoria" (2018-09-09 last obs). Retrieved 30 April 2019.
  120. "JPL Small-Body Database Browser: 1143 Odysseus (1930 BH)" (2018-10-22 last obs). Retrieved 2 May 2019.
  121. "JPL Small-Body Database Browser: 2241 Alcathous (1979 WM)" (2018-06-17 last obs). Retrieved 2 May 2019.
  122. "JPL Small-Body Database Browser: 57 Mnemosyne" (2018-06-25 last obs). Retrieved 30 April 2019.
  123. "JPL Small-Body Database Browser: 659 Nestor (A908 FE)" (2018-10-22 last obs). Retrieved 2 May 2019.
  124. "JPL Small-Body Database Browser: 40 Harmonia" (2018-09-15 last obs). Retrieved 3 May 2019.
  125. Buie, Marc W.; Leiva, Rodrigo; Keller, John M.; Desmars, Josselin; Sicardy, Bruno; Kavelaars, J. J.; et al. (April 2020). "A Single-chord Stellar Occultation by the Extreme Trans-Neptunian Object (541132) Leleākūhonua". The Astronomical Journal. 159 (5): 230. arXiv:2011.03889. Bibcode:2020AJ....159..230B. doi:10.3847/1538-3881/ab8630. 230.
  126. "JPL Small-Body Database Browser: 23 Thalia" (2018-10-21 last obs). Retrieved 2 May 2019.
  127. "JPL Small-Body Database Browser: 62 Erato" (2018-05-24 last obs). Retrieved 3 May 2019.
  128. "JPL Small-Body Database Browser: 5 Astraea" (2018-09-16 last obs). Retrieved 30 April 2019.
  129. "JPL Small-Body Database Browser: 91 Aegina" (2018-07-31 last obs). Retrieved 3 May 2019.
  130. "JPL Small-Body Database Browser: 35 Leukothea" (2018-10-22 last obs). Retrieved 3 May 2019.
  131. "LCDB Data for (617)". Asteroid Lightcurve Database (LCDB). Retrieved 1 May 2019.
  132. "JPL Small-Body Database Browser: 1208 Troilus (1931 YA)" (2018-07-22 last obs). Retrieved 2 May 2019.
  133. Chamberlin, Alan. "JPL Small-Body Database Search Engine".
  134. "JPL Small-Body Database Browser: 233 Asterope" (2018-10-24 last obs). Retrieved 3 May 2019.
  135. Sierks, H.; Lamy, P.; Barbieri, C.; Koschny, D.; Rickman, H.; Rodrigo, R.; a'Hearn, M. F.; Angrilli, F.; Barucci, M. A.; Bertaux, J. - L.; Bertini, I.; Besse, S.; Carry, B.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; De Leon, J.; Ferri, F.; Fornasier, S.; Fulle, M.; Hviid, S. F.; Gaskell, R. W.; Groussin, O.; Gutierrez, P.; Ip, W.; Jorda, L.; Kaasalainen, M.; Keller, H. U. (2011). "Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System" (PDF). Science. 334 (6055): 487–490. Bibcode:2011Sci...334..487S. doi:10.1126/science.1207325. hdl:1721.1/110553. PMID 22034428. S2CID 17580478.
  136. M. Pätzold; T. P. Andert; S. W. Asmar; J. D. Anderson; J.-P. Barriot; M. K. Bird; B. Häusler; et al. (28 October 2011). "Asteroid 21 Lutetia: Low Mass, High Density" (PDF). Science Magazine. 334 (6055): 491–2. Bibcode:2011Sci...334..491P. doi:10.1126/science.1209389. hdl:1721.1/103947. PMID 22034429. S2CID 41883019.
  137. "JPL Small-Body Database Browser: 53 Kalypso" (2018-10-18 last obs). Retrieved 30 April 2019.
  138. "JPL Small-Body Database Browser: 26 Prosperina" (2018-10-22 last obs). Retrieved 3 May 2019.
  139. "JPL Small-Body Database Browser: 30 Urania" (2018-09-11 last obs). Retrieved 3 May 2019.
  140. "JPL Small-Body Database Browser: 2920 Automedon (1981 JR)" (2018-10-15 last obs). Retrieved 2 May 2019.
  141. Johnston, Wm. Robert (21 September 2014). "(90) Antiope and S/2000 (90) 1". Johnston's Archive. Retrieved 14 June 2019.
  142. "JPL Small-Body Database Browser: 61 Danae" (2018-07-13 last obs). Retrieved 4 May 2019.
  143. "JPL Small-Body Database Browser: 17 Thetis" (2018-05-13 last obs). Retrieved 3 May 2019.
  144. "JPL Small-Body Database Browser: 55 Pandora" (2018-10-22 last obs). Retrieved 4 May 2019.
  145. "JPL Small-Body Database Browser: 379 Huenna (A894 AA)" (2018-08-30 last obs). Retrieved 3 May 2019.
  146. "JPL Small-Body Database Browser: 50 Virginia" (2018-10-19 last obs). Retrieved 3 May 2019.
  147. "JPL Small-Body Database Browser: 4348 Poulydamas (1988 RU)" (2018-07-13 last obs). Retrieved 4 May 2019.
  148. Johnston, Wm. Robert (20 September 2014). "(58534) Logos and Zoe". Johnston's Archive. Retrieved 4 May 2019.
  149. "JPL Small-Body Database Browser: 32 Pomona" (2018-06-12 last obs). Retrieved 4 May 2019.
  150. Grav, T.; Bauer, J. M.; Mainzer, A. K.; Masiero, J. R.; Nugent, C. R.; Cutri, R. M.; et al. (August 2015). "NEOWISE: Observations of the Irregular Satellites of Jupiter and Saturn". The Astrophysical Journal. 809 (1): 9. arXiv:1505.07820. Bibcode:2015ApJ...809....3G. doi:10.1088/0004-637X/809/1/3. S2CID 5834661. 3.
  151. "LCDB Data for (10370)". Asteroid Lightcurve Database (LCDB). Retrieved 4 May 2019.
  152. "JPL Small-Body Database Browser: 43 Ariadne" (2018-10-20 last obs). Retrieved 4 May 2019.
  153. "JPL Small-Body Database Browser: 99 Dike" (2018-10-24 last obs). Retrieved 4 May 2019.
  154. "JPL Small-Body Database Browser: 79 Eurynome" (2018-08-18 last obs). Retrieved 4 May 2019.
  155. "JPL Small-Body Database Browser: 75 Eurydike" (2019-05-08 last obs). Retrieved 3 June 2019.
  156. "JPL Small-Body Database Browser: 29P/Schwassmann-Wachmann 1" (2018-10-16 last obs). Retrieved 4 May 2019.
  157. "JPL Small-Body Database Browser: 64 Angelina" (2019-05-09 last obs). Retrieved 3 June 2019.
  158. "JPL Small-Body Database Browser: 82 Alkmene" (2019-05-09 last obs). Retrieved 3 June 2019.
  159. "JPL Small-Body Database Browser: 142 Polana" (2019-05-08 last obs). Retrieved 4 May 2019.
  160. "JPL Small-Body Database Browser: 253 Mathilde" (2018-10-22 last obs). Retrieved 4 May 2019.
  161. D. K. Yeomans; et al. (1997). "Estimating the mass of asteroid 253 Mathilde from tracking data during the NEAR flyby". Science. 278 (5346): 2106–9. Bibcode:1997Sci...278.2106Y. doi:10.1126/science.278.5346.2106. PMID 9405343.
  162. "JPL Small-Body Database Browser: 73 Klytia" (2019-05-11 last obs). Retrieved 5 June 2019.
  163. "JPL Small-Body Database Browser: 60 Echo" (2019-05-11 last obs). Retrieved 3 June 2019.
  164. "Metis By the Numbers". NASA Solar System Exploration. 25 April 2019. Retrieved 3 May 2019.
  165. "JPL Small-Body Database Browser: 167 Urda" (2018-05-11 last obs). Retrieved 5 June 2019.
  166. Verbiscer, A. J.; Porter, S. B.; Buratti, B. J.; Weaver, H. A.; Spencer, J. R.; Showalter, M. R.; Buie, M. W.; Hofgartner, J. D.; Hicks, M. D.; Ennico-Smith, K.; Olkin, C. B.; Stern, S. A.; Young, L. A.; Cheng, A. (2018). "Phase Curves of Nix and Hydra from the New Horizons Imaging Cameras". The Astrophysical Journal. 852 (2): L35. Bibcode:2018ApJ...852L..35V. doi:10.3847/2041-8213/aaa486.
  167. Stern, S. A.; Bagenal, F.; Ennico, K.; Gladstone, G. R.; et al. (15 October 2015). "The Pluto system: Initial results from its exploration by New Horizons". Science. 350 (6258): aad1815. arXiv:1510.07704. Bibcode:2015Sci...350.1815S. doi:10.1126/science.aad1815. PMID 26472913. S2CID 1220226.
  168. "JPL Small-Body Database Browser: 158 Koronis" (2018-05-08 last obs). Retrieved 12 June 2019.
  169. "JPL Small-Body Database Browser: 52872 Okyrhoe (1998 SG35)" (2018-08-18 last obs). Retrieved 4 May 2019.
  170. Stern, S.A.; et al. (9 January 2019). "Overview of initial results from the reconnaissance flyby of a Kuiper Belt planetesimal: 2014 MU69". arXiv:1901.02578 [astro-ph.EP].
  171. Britt, D. T.; Yeomans, D. K.; Housen, K.; Consolmagno, G. (2002). "Asteroid Density, Porosity, and Structure" (PDF). Asteroids III: 485–500. Bibcode:2002aste.book..485B. Retrieved 2008-10-27.
  172. Britt et al. 2002, p. 486
  173. Porco, C. C.; et al. (2007). "Saturn's Small Inner Satellites: Clues to Their Origins". Science. 318 (5856): 1602–1607. Bibcode:2007Sci...318.1602P. doi:10.1126/science.1143977. PMID 18063794. S2CID 2253135.
  174. F. Marchis; et al. (2003). "A three-dimensional solution for the orbit of the asteroidal satellite of 22 Kalliope". Icarus. 165 (1): 112–120. Bibcode:2003Icar..165..112M. doi:10.1016/S0019-1035(03)00195-7.
  175. Harris, Alan W.; Delbó, Marco; Binzel, Richard P.; Davies, John K.; Roberts, Julie; Tholen, David J.; Whiteley, Robert J. (1 October 2001). "Visible to Thermal-Infrared Spectrophotometry of a Possible Inactive Cometary Nucleus". Icarus. 153 (2): 332–337. Bibcode:2001Icar..153..332H. doi:10.1006/icar.2001.6687.
  176. "Phobos In Depth". NASA Solar System Exploration. 25 April 2019. Retrieved 3 May 2019.
  177. "Phobos By the Numbers". NASA Solar System Exploration. 25 April 2019. Retrieved 3 May 2019.
  178. Yeomans, D. K.; Antreasian, P. G.; Barriot, J.-P.; Chesley, S. R.; Dunham, D. W.; Farquhar, R. W.; et al. (September 2000). "Radio Science Results During the NEAR-Shoemaker Spacecraft Rendezvous with Eros". Science. 289 (5487): 2085–2088. Bibcode:2000Sci...289.2085Y. doi:10.1126/science.289.5487.2085. ISSN 0036-8075. PMID 11000104.
  179. "Special Session: Planet 9 from Outer Space - Pluto Geology and Geochemistry". YouTube. Lunar and Planetary Institute. 25 March 2016. Retrieved 27 May 2019.
  180. Johnston, Robert. "(134340) Pluto, Charon, Nix, Hydra, Kerberos, and Styx". Retrieved 3 May 2019.
  181. P. C. Thomas; J. Veverka; D. Simonelli; P. Helfenstein; B. Carcich; M. J. S. Belton; et al. (1994). "The Shape of Gaspra". Icarus. 107 (1): 23–36. Bibcode:1994Icar..107...23T. doi:10.1006/icar.1994.1004.
  182. Krasinsky, G. A.; Pitjeva, E. V.; Vasilyev, M. V.; Yagudina, E. I. (July 2002). "Hidden Mass in the Asteroid Belt". Icarus. 158 (1): 98–105. Bibcode:2002Icar..158...98K. doi:10.1006/icar.2002.6837.
  183. "Deimos By the Numbers". NASA Solar System Exploration. 25 April 2019. Retrieved 3 May 2019.
  184. "What Have We Learned About Halley's Comet?". Astronomical Society of the Pacific (No. 6 – Fall 1986). 1986. Retrieved 16 December 2008.
  185. G. Cevolani; G. Bortolotti; A. Hajduk (1987). "Halley, comet's mass loss and age". Il Nuovo Cimento C. Italian Physical Society. 10 (5): 587–591. Bibcode:1987NCimC..10..587C. doi:10.1007/BF02507255. S2CID 120603847.
  186. Fang, Julia; Margot, Jean-Luc; Rojo, Patricio (16 July 2012). "Orbits, Masses, and Evolution of Main Belt Triple (87) Sylvia". The Astronomical Journal. 144 (2): 70. arXiv:1206.5755. Bibcode:2012AJ....144...70F. doi:10.1088/0004-6256/144/2/70. S2CID 118516053.
  187. "JPL Small-Body Database Browser: 2685 Masursky (1981 JN)" (2018-05-09 last obs). Retrieved 5 June 2019.
  188. Johnston, Wm. Robert (21 September 2014). "(216) Kleopatra, Alexhelios, and Cleoselene". Johnston's Archive. Retrieved 8 June 2019.
  189. "JPL Small-Body Database Browser: 1509 Esclangona (1938 YG)" (2019-05-11 last obs). Retrieved 5 June 2019.
  190. Johnston, Wm. Robert (27 May 2019). "(31) Euphrosyne". Johnston's Archive. Retrieved 15 June 2019.
  191. "JPL Small-Body Database Browser: 9P/Tempel 1" (2019-01-02 last obs). Retrieved 8 June 2019.
  192. Agle, D. C.; Brown, Dwayne; Farukhi, Suraiya (22 December 2017). "Arecibo Radar Returns with Asteroid Phaethon Images". NASA. Retrieved 7 June 2019.
  193. Reddy, Vishnu; Gaffey, Michael J.; Abell, Paul A.; Hardersen, Paul S. (May 2012). "Constraining albedo, diameter and composition of near-Earth asteroids via near-infrared spectroscopy". Icarus. 219 (1): 382–392. Bibcode:2012Icar..219..382R. doi:10.1016/j.icarus.2012.03.005.
  194. Weaver, H. A.; Stern, S.A.; Parker, J. Wm. (2003). "Hubble Space Telescope STIS Observations of Comet 19P/BORRELLY during the Deep Space 1 Encounter". The American Astronomical Society. 126 (1): 444–451. Bibcode:2003AJ....126..444W. doi:10.1086/375752.
  195. Johnston, Wm. Robert (19 February 2017). "(163693) Atira". Johnston's Archive. Retrieved 8 June 2019.
  196. "JPL Small-Body Database Browser: 5535 Annefrank (1942 EM)" (2018-05-24 last obs). Retrieved 8 June 2019.
  197. "JPL Small-Body Database Browser: 3749 Balam (1982 BG1)" (2019-05-11 last obs). Retrieved 5 June 2019.
  198. Wm. Robert Johnston (2009-01-13). "(3749) Balam, S/2002 (3749) 1, and third component". Johnston's Archive. Retrieved 15 July 2020.
  199. Thomas, P. C.; Burns, J. A.; Tiscareno, M. S.; Hedman, M. M.; et al. (2013). "Saturn's Mysterious Arc-Embedded Moons: Recycled Fluff?" (PDF). 44th Lunar and Planetary Science Conference. p. 1598. Retrieved 8 June 2019.
  200. Johnston, Wm. Robert (27 May 2019). "(3122) Florence". Johnston's Archive. Retrieved 9 June 2019.
  201. "Comet 81P/Wild 2". The Planetary Society. Archived from the original on 6 January 2009. Retrieved 8 June 2019.
  202. "LCDB Data for (2577)". Asteroid Lightcurve Database (LCDB). Retrieved 11 June 2019.
  203. "JPL Small-Body Database Browser: 67P/Churyumov-Gerasimenko" (2017-04-27 last obs). Retrieved 8 June 2019.
  204. Pätzold, M.; Andert, T.; et al. (4 February 2016). "A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field". Nature. 530 (7588): 63–65. Bibcode:2016Natur.530...63P. doi:10.1038/nature16535. PMID 26842054. S2CID 4470894.
  205. Masiero, Joseph R.; Mainzer, A. K.; Grav, T.; Bauer, J. M.; Cutri, R. M.; Dailey, J.; et al. (November 2011). "Main Belt Asteroids with WISE/NEOWISE. I. Preliminary Albedos and Diameters". The Astrophysical Journal. 741 (2): 20. arXiv:1109.4096. Bibcode:2011ApJ...741...68M. doi:10.1088/0004-637X/741/2/68. S2CID 118745497.
  206. "JPL Small-Body Database Browser: 4183 Cuno (1959 LM)" (2018-11-06 last obs). Retrieved 12 June 2019.
  207. Pravec, Petr; Harris, Alan W.; Kusnirák, Peter; Galád, Adrián; Hornoch, Kamil (September 2012). "Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations". Icarus. 221 (1): 365–387. Bibcode:2012Icar..221..365P. doi:10.1016/j.icarus.2012.07.026.
  208. Johnston, Wm. Robert (21 September 2014). "(702) Alauda and Pichi unem". Johnston's Archive. Retrieved 15 June 2019.
  209. Huang, Jiangchuan; Ji, Jianghui; Ye, Peijian; Wang, Xiaolei; Yan, Jun; Meng, Linzhi (2013). "The Ginger-shaped Asteroid 4179 Toutatis: New Observations from a Successful Flyby of Chang'e-2". Scientific Reports. Nature Research. 3 (3411): 3411. arXiv:1312.4329. Bibcode:2013NatSR...3E3411H. doi:10.1038/srep03411. PMC 3860288. PMID 24336501.
  210. Dr. Lance A. M. Benner (28 May 2013). "(285263) 1998 QE2 Goldstone Radar Observations Planning". NASA/JPL Asteroid Radar Research. Retrieved 7 June 2019.
  211. Fang, Julia; Margot, Jean-Luc; Brozovic, Marina; Nolan, Michael C.; Benner, Lance A. M.; Taylor, Patrick A. (May 2011). "Orbits of Near-Earth Asteroid Triples 2001 SN263 and 1994 CC: Properties, Origin, and Evolution". The Astronomical Journal. 141 (5): 15. arXiv:1012.2154. Bibcode:2011AJ....141..154F. doi:10.1088/0004-6256/141/5/154. S2CID 119193346.
  212. Johnston, Wm. Robert (21 September 2014). "(153591) 2001 SN263, "Beta", and "Gamma"". Johnston's Archive. Retrieved 9 June 2019.
  213. Johnston, Wm. Robert (21 September 2014). "(1509) Esclangona and S/2003 (1509) 1". Johnston's Archive. Retrieved 5 June 2019.
  214. "New Horizons Mission to Pluto". Technology Org. 18 July 2015. Retrieved 4 December 2018.
  215. "JPL Small-Body Database Browser: 3753 Cruithne (1986 TO)" (2019-05-12 last obs). Retrieved 8 June 2019.
  216. Tedesco, Edward; Metcalfe, Leo (4 April 2002). "New study reveals twice as many asteroids as previously believed" (Press release). European Space Agency. Retrieved 20 October 2012.
  217. "JPL Small-Body Database Browser: 2102 Tantalus (1975 YA)" (2017-06-28 last obs). Retrieved 8 June 2019.
  218. "LCDB Data for (9969) Braille". Asteroid Lightcurve Database (LCDB). Retrieved 8 June 2019.
  219. "LCDB Data for (308242)". Asteroid Lightcurve Database (LCDB). Retrieved 9 June 2019.
  220. "JPL Small-Body Database Browser: 1862 Apollo (1932 HA)" (2018-04-27 last obs). Retrieved 8 June 2019.
  221. "JPL Small-Body Database Browser: 85989 (1999 JD6)" (2019-06-08 last obs). Retrieved 12 June 2019.
  222. Greenberg, Adam H.; Margot, Jean-Luc; Verma, Ashok K.; Taylor, Patrick A.; Naidu, Shantanu P.; Brozovic, Marina.; et al. (March 2017). "Asteroid 1566 Icarus's Size, Shape, Orbit, and Yarkovsky Drift from Radar Observations". The Astronomical Journal. 153 (3): 16. arXiv:1612.07434. Bibcode:2017AJ....153..108G. doi:10.3847/1538-3881/153/3/108. S2CID 28388555.
  223. Chapman, Clark R. (October 1996). "S-Type Asteroids, Ordinary Chondrites, and Space Weathering: The Evidence from Galileo's Fly-bys of Gaspra and Ida". Meteoritics. 31 (6): 699–725. Bibcode:1996M&PS...31..699C. doi:10.1111/j.1945-5100.1996.tb02107.x.
  224. "JPL Small-Body Database Browser: 4769 Castalia (1989 PB)" (2016-06-17 last obs). Retrieved 8 June 2019.
  225. Brozovic, Marina; Benner, Lance A. M.; Magri, Christopher; Scheeres, Daniel J.; Busch, Michael W.; Giorgini, Jon D. (April 2017). "Goldstone radar evidence for short-axis mode non-principal-axis rotation of near-Earth asteroid (214869) 2007 PA8". Icarus. 286: 314–329. Bibcode:2017Icar..286..314B. doi:10.1016/j.icarus.2016.10.016.
  226. "JPL Small-Body Database Browser: 66391 Moshup (1999 KW4)" (2019-06-04 last obs). Retrieved 8 June 2019.
  227. Johnston, Wm. Robert (20 September 2014). "(66391) Moshup and Squannit". Johnston's Archive. Retrieved 8 June 2019.
  228. Busch, Michael W.; Giorgini, Jon D.; Ostro, Steven J.; Benner, Lance A. M.; Jurgens, Raymond F.; Rose, Randy (October 2007). "Physical modeling of near-Earth Asteroid (29075) 1950 DA" (PDF). Icarus. 190 (2): 608–621. Bibcode:2007Icar..190..608B. doi:10.1016/j.icarus.2007.03.032.
  229. "Earth Impact Risk Summary: 29075". NASA/JPL Near-Earth Object Program Office. Archived from the original on 5 March 2019. Retrieved 14 June 2019.
  230. "JPL Small-Body Database Browser: 394130 (2006 HY51)" (2019-06-01 last obs). Retrieved 12 June 2019.
  231. Lisse, C. M.; Fernandez; Reach; Bauer; A'Hearn; Farnham; et al. (2009). "Spitzer Space Telescope Observations of the Nucleus of Comet 103P/Hartley 2". Publications of the Astronomical Society of the Pacific. 121 (883): 968–975. arXiv:0906.4733. Bibcode:2009PASP..121..968L. doi:10.1086/605546. JSTOR 10.1086/605546. S2CID 17318657.
  232. "LCDB Data for (163899)". Asteroid Lightcurve Database (LCDB). Retrieved 9 June 2019.
  233. "JPL Small-Body Database Browser: 3908 Nyx (1980 PA)" (2019-04-25 last obs). Retrieved 8 June 2019.
  234. "JPL Small-Body Database Browser: 153814 (2001 WN5)" (2019-06-02 last obs). Retrieved 10 June 2019.
  235. "LCDB Data for 2017 YE5". Asteroid Lightcurve Database (LCDB). Retrieved 9 June 2019.
  236. Müller, T. G.; Durech, J.; Ishiguro, M.; Mueller, M.; Krühler, T.; Yang, H. (March 2017). "Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): Searching for the object's spin-axis orientation". Astronomy and Astrophysics. 599: 25. arXiv:1611.05625. Bibcode:2017A&A...599A.103M. doi:10.1051/0004-6361/201629134. S2CID 73519172.
  237. Clark, Stephen (6 September 2018). "Hayabusa 2 team sets dates for asteroid landings – Spaceflight Now". spaceflightnow.com. Retrieved 7 September 2018.
  238. Nugent, C. R.; Mainzer, A.; Bauer, J.; Cutri, R. M.; Kramer, E. A.; Grav, T.; et al. (September 2016). "NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos". The Astronomical Journal. 152 (3): 12. arXiv:1606.08923. Bibcode:2016AJ....152...63N. doi:10.3847/0004-6256/152/3/63. S2CID 119289027.
  239. "LCDB Data for 2014 JO25". Asteroid Lightcurve Database (LCDB). Retrieved 9 June 2019.
  240. Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; et al. (November 2012). "Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations". Icarus. 221 (2): 1130–1161. arXiv:1604.05384. Bibcode:2012Icar..221.1130M. doi:10.1016/j.icarus.2012.09.013. S2CID 161887.
  241. "JPL Small-Body Database Browser: 65803 Didymos (1996 GT)" (2018-04-24 last obs). Retrieved 8 June 2019.
  242. Johnston, Wm. Robert (20 September 2014). "(65803) Didymos". Johnston's Archive. Retrieved 8 June 2019.
  243. Müller, T. G.; Marciniak, A.; Butkiewicz-Bąk, M.; Duffard, R.; Oszkiewicz, D.; Käufl, H. U.; Szakáts, R.; Santana-Ros, T.; Kiss, C.; Santos-Sanz, P. (February 2017). "Large Halloween asteroid at lunar distance" (PDF). Astronomy & Astrophysics. 598: A63. arXiv:1610.08267. Bibcode:2017A&A...598A..63M. doi:10.1051/0004-6361/201629584. S2CID 119162848. Retrieved 9 June 2019.
  244. Brozovic, Marina; Benner, Lance A. M.; Taylor, Patrick A.; Nolan, Michael C.; Howell, Ellen S.; Magri, Christopher (November 2011). "Radar and optical observations and physical modeling of triple near-Earth Asteroid (136617) 1994 CC". Icarus. 216 (1): 241–256. arXiv:1310.2000. Bibcode:2011Icar..216..241B. doi:10.1016/j.icarus.2011.09.002.
  245. Johnston, Wm. Robert (21 September 2014). "(136617) 1994 CC, "Beta", and "Gamma"". Johnston's Archive. Retrieved 9 June 2019.
  246. "JPL Small-Body Database Browser: 172034 (2001 WR1)" (2019-05-21 last obs). Retrieved 8 June 2019.
  247. "JPL Small-Body Database Browser: 6489 Golevka (1991 JX)" (2015-11-03 last obs). Retrieved 8 June 2019.
  248. Nolan, M. C.; Magri, C.; Howell, E. S.; Benner, L. A. M.; Giorgini, J. D.; Hergenrother, C. W.; Hudson, R. S.; Lauretta, D. S.; Margot, J. L.; Ostro, S. J.; Scheeres, D. J. (2013). "Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and lightcurve observations". Icarus. 226 (1): 629–640. Bibcode:2013Icar..226..629N. doi:10.1016/j.icarus.2013.05.028. ISSN 0019-1035.
  249. Chesley, Steven R.; Farnocchia, Davide; Nolan, Michael C.; Vokrouhlický, David; Chodas, Paul W.; Milani, Andrea; Spoto, Federica; Rozitis, Benjamin; Benner, Lance A.M.; Bottke, William F.; Busch, Michael W.; Emery, Joshua P.; Howell, Ellen S.; Lauretta, Dante S.; Margot, Jean-Luc; Taylor, Patrick A. (2014). "Orbit and bulk density of the OSIRIS-REx target Asteroid (101955) Bennu". Icarus. 235: 5–22. arXiv:1402.5573. Bibcode:2014Icar..235....5C. doi:10.1016/j.icarus.2014.02.020. ISSN 0019-1035. S2CID 30979660.
  250. "JPL Small-Body Database Browser: 153201 (2000 WO107)" (2018-10-13 last obs). Retrieved 12 June 2019.
  251. "JPL Small-Body Database Browser: 163132 (2002 CU11)" (2018-09-09 last obs). Retrieved 8 June 2019.
  252. Nugent, C. R.; Mainzer, A.; Masiero, J.; Bauer, J.; Cutri, R. M.; Grav, T.; et al. (December 2015). "NEOWISE Reactivation Mission Year One: Preliminary Asteroid Diameters and Albedos". The Astrophysical Journal. 814 (2): 13. arXiv:1509.02522. Bibcode:2015ApJ...814..117N. doi:10.1088/0004-637X/814/2/117. S2CID 9341381.
  253. "Radar Images of near-Earth Asteroid 2006 DP14". Jet Propulsion Laboratory. 25 February 2014. Retrieved 9 June 2019.
  254. Trilling, D. E.; Mueller, M.; Hora, J. L.; Fazio, G.; Spahr, T.; Stansberry, J. A.; et al. (August 2008). "Diameters and Albedos of Three Subkilometer Near-Earth Objects Derived from Spitzer Observations". The Astrophysical Journal Letters. 683 (2): L199–L202. arXiv:0807.1717. Bibcode:2008ApJ...683L.199T. doi:10.1086/591668. S2CID 14319204.
  255. "JPL Small-Body Database Browser: (2010 TK7)" (2017-10-30 last obs). Retrieved 8 June 2019.
  256. "2006 SU49 Impact Risk". NASA/JPL Near-Earth Object Program Office. Archived from the original on 28 September 2006.
  257. M.W. Busch; et al. (31 March 2012). "Shape and Spin of Near-Earth Asteroid 308635 (2005 YU55) From Radar Images and Speckle Tracking" (PDF). Lunar and Planetary Institute. Retrieved 9 April 2012.
  258. Fujiwara, A.; Kawaguchi, J.; Yeomans, D. K.; Abe, M.; Mukai, T.; Okada, T. (June 2006). "The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa". Science. 312 (5778): 1330–1334. Bibcode:2006Sci...312.1330F. doi:10.1126/science.1125841. PMID 16741107. S2CID 206508294. Retrieved 8 June 2019.
  259. "JPL Small-Body Database Browser: 99942 Apophis (2004 MN4)" (2015-01-03 last obs). Retrieved 8 June 2019.
  260. "Earth Impact Risk Summary: 99942". NASA/JPL Near-Earth Object Program Office. Archived from the original on 5 March 2019. Retrieved 14 June 2019.
  261. "A Small Find Near Equinox". Cassini Solstice Mission. Jet Propulsion Laboratory. 7 August 2009. Archived from the original on 10 October 2009. Retrieved 8 June 2019.
  262. "LCDB Data for (277475)". Asteroid Lightcurve Database (LCDB). Retrieved 11 June 2019.
  263. Reddy, Vishnu; Gary, Bruce L.; Sanchez, Juan A.; Takir, Driss; Thomas, Cristina A.; Hardersen, Paul S. (September 2015). "The Physical Characterization of the Potentially Hazardous Asteroid 2004 BL86: A Fragment of a Differentiated Asteroid". The Astrophysical Journal. 811 (1): 10. arXiv:1509.07122. Bibcode:2015ApJ...811...65R. doi:10.1088/0004-637X/811/1/65. S2CID 119260041.
  264. "NASA Scientists Get First Images of Earth Flyby Asteroid". Jet Propulsion Laboratory. 25 January 2008.
  265. "LCDB Data for 2002 VE68". Asteroid Lightcurve Database (LCDB). Retrieved 12 June 2019.
  266. Bruce L., Gary (January 2016). "Unusual Properties for the NEA (436724) 2011 UW158". The Minor Planet Bulletin. 43 (1): 33–38. Bibcode:2016MPBu...43...33G. ISSN 1052-8091.
  267. "LCDB Data for 2017 BQ6". Asteroid Lightcurve Database (LCDB). Retrieved 9 June 2019.
  268. Taylor, Patrick A.; et al. (13 April 2007). "Spin Rate of Asteroid (54509) 2000 PH5 Increasing Due to the YORP Effect" (PDF). Science. 316 (5822): 274–277. Bibcode:2007Sci...316..274T. doi:10.1126/science.1139038. PMID 17347415. S2CID 29191700.
  269. "LCDB Data for (469219)". Asteroid Lightcurve Database (LCDB). Retrieved 8 June 2019.
  270. Dr. Lance A. M. Benner (13 January 2013). "2012 DA14 Goldstone Radar Observations Planning". NASA/JPL Asteroid Radar Research. Retrieved 15 January 2013.
  271. Ostro, Steven J.; Pravec, Petr; Benner, Lance A. M.; Hudson, R. Scott; Sarounová, Lenka; Hicks, Michael D. (June 1999). "Radar and Optical Observations of Asteroid 1998 KY26". Science. 285 (5427): 557–559 (SciHomepage). Bibcode:1999Sci...285..557O. doi:10.1126/science.285.5427.557. PMID 10417379. S2CID 5728247.
  272. "The 2012 TC4 Observing Campaign – Radar observations UPDATE October 12, 2017". University of Maryland. Retrieved 10 June 2019.
  273. "Reports of Meteorite Strike in Nicaragua and Update on Asteroid 2014 RC". NASA/JPL Near-Earth Object Program Office. Archived from the original on 11 October 2014. Retrieved 10 June 2019.
  274. "Earth Impact Risk Summary: 2010 RF12". NASA/JPL Near-Earth Object Program Office. Archived from the original on 22 January 2017. Retrieved 12 June 2019.
  275. Mommert, M.; et al. (19 June 2014). "Physical properties of near-earth asteroid 2011 MD". The Astrophysical Journal Letters. 789 (1): L22. arXiv:1406.5253. Bibcode:2014ApJ...789L..22M. doi:10.1088/2041-8205/789/1/L22. S2CID 67851874.
  276. Jenniskens, P.; et al. (2009). "The impact and recovery of asteroid 2008 TC3". Nature. 458 (7237): 485–488. Bibcode:2009Natur.458..485J. doi:10.1038/nature07920. PMID 19325630. S2CID 7976525.
  277. "Asteroid 2008 TS26". Asteroids Near Earth. Retrieved 22 June 2019.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.