Solar eclipse of February 27, 2036
A partial solar eclipse will occur on Wednesday, February 27, 2036. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
Solar eclipse of February 27, 2036 | |
---|---|
Map | |
Type of eclipse | |
Nature | Partial |
Gamma | -1.1942 |
Magnitude | 0.6286 |
Maximum eclipse | |
Coordinates | 71.6°S 131.4°W |
Times (UTC) | |
Greatest eclipse | 4:46:49 |
References | |
Saros | 150 (18 of 71) |
Catalog # (SE5000) | 9587 |
Images
Animated path
Related eclipses
Solar eclipses of 2033–2036
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]
Solar eclipse series sets from 2033–2036 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
120 | March 30, 2033 Total |
125 | September 23, 2033 Partial | |||
130 | March 20, 2034 Total |
135 | September 12, 2034 Annular | |||
140 | March 9, 2035 Annular |
145 | September 2, 2035 Total | |||
150 | February 27, 2036 Partial |
155 | August 21, 2036 Partial | |||
A partial solar eclipse on July 23, 2036 occurs in the next lunar year eclipse set. |
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1901 and 2100 | |||
---|---|---|---|
March 6, 1905 (Saros 138) |
February 3, 1916 (Saros 139) |
January 3, 1927 (Saros 140) | |
December 2, 1937 (Saros 141) |
November 1, 1948 (Saros 142) |
October 2, 1959 (Saros 143) | |
August 31, 1970 (Saros 144) |
July 31, 1981 (Saros 145) |
June 30, 1992 (Saros 146) | |
May 31, 2003 (Saros 147) |
April 29, 2014 (Saros 148) |
March 29, 2025 (Saros 149) | |
February 27, 2036 (Saros 150) |
January 26, 2047 (Saros 151) |
December 26, 2057 (Saros 152) | |
November 24, 2068 (Saros 153) |
October 24, 2079 (Saros 154) |
September 23, 2090 (Saros 155) |
Metonic cycle
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
21 events between July 22, 1971 and July 22, 2047 | ||||
---|---|---|---|---|
July 21–22 | May 9–11 | February 26–27 | December 14–15 | October 2–3 |
106 | 108 | 110 | 112 | 114 |
July 21, 1952 | May 10, 1956 | February 26, 1960 | December 16, 1963 | October 3, 1967 |
116 | 118 | 120 | 122 | 124 |
July 22, 1971 |
May 11, 1975 |
February 26, 1979 |
December 15, 1982 |
October 3, 1986 |
126 | 128 | 130 | 132 | 134 |
July 22, 1990 |
May 10, 1994 |
February 26, 1998 |
December 14, 2001 |
October 3, 2005 |
136 | 138 | 140 | 142 | 144 |
July 22, 2009 |
May 10, 2013 |
February 26, 2017 |
December 14, 2020 |
October 2, 2024 |
146 | 148 | 150 | 152 | 154 |
July 22, 2028 |
May 9, 2032 |
February 27, 2036 |
December 15, 2039 |
October 3, 2043 |
156 | ||||
July 22, 2047 |
References
- van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
Wikimedia Commons has media related to Solar eclipse of 2036 February 27. |