Solar eclipse of February 7, 2008

An annular solar eclipse occurred at the Moon's ascending node of the orbit on February 7, 2008. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 7 days after apogee (January 31, 2008) and 6.9 days before perigee (February 14, 2008), the Moon's apparent diameter was near the average diameter.

Solar eclipse of February 7, 2008
Map
Type of eclipse
NatureAnnular
Gamma-0.957
Magnitude0.965
Maximum eclipse
Duration132 sec (2 m 12 s)
Coordinates67.6°S 150.5°W / -67.6; -150.5
Max. width of band444 km (276 mi)
Times (UTC)
Greatest eclipse3:56:10
References
Saros121 (60 of 71)
Catalog # (SE5000)9525

The moon's apparent diameter was 1 arcminute, 17.8 arcseconds (77.8 arcseconds) smaller than the August 1, 2008 total solar eclipse.

Eclipse Season

This is the first eclipse this season.

Second eclipse this season: 21 February 2008 Total Lunar Eclipse

Visibility

Centrality was visible from parts of Antarctica. A significant partial eclipse was visible over New Zealand and a minor partial eclipse was seen from southeastern Australia.

For most solar eclipses the path of centrality moves eastwards. In this case the path moved west round Antarctica and then north.

Observations

The best land-based visibility outside of Antarctica was from New Zealand. Professional astronomer and eclipse-chaser Jay Pasachoff observed it from Nelson, New Zealand, 60% coverage, under perfect weather.[1][2]

Images


Animated path

Eclipses of 2008

Solar eclipses 2008–2011

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

Saros 121

Solar saros 121, repeating every about 18 years, 11 days, and 8 hours, contains 71 events. The series started with a partial solar eclipse on April 25, 944. It contains total eclipses from July 10, 1070, to October 9, 1809. It contains hybrid eclipses on October 20, 1827, and October 30, 1845. It contains annular eclipses from November 11, 1863, to February 28, 2044. The series ends at member 71 as a partial eclipse on June 7, 2206. The longest total eclipse occurred on June 21, 1629, with greatest duration of totality at 6 minutes and 20 seconds. The longest annular eclipse will occur on February 28, 2044, with greatest duration of annularity at 2 minutes and 27 seconds.[4]

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

Notes

  1. Solar Eclipse in New Zealand Archived 2011-02-02 at the Wayback Machine, meade4m.com: Advisor/Partner: Jay Pasachoff
  2. 2008 Annular Eclipse Professor Jay Pasachoff, Williams College--Hopkins Observatory
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.