Solar eclipse of June 30, 1954

A total solar eclipse occurred at the Moon's descending node of the orbit on June 30, 1954. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 3.1 days after perigee (Perigee on June 27, 1954), the Moon's apparent diameter was larger. Totality lasted 2 minutes and 34.93 seconds, but at sunrise 1 minute and 8.6 seconds and at sunset 1 minute and 5.3 seconds. The moon's apparent diameter was larger, 1930.2 arc-seconds.

Solar eclipse of June 30, 1954
Map
Type of eclipse
NatureTotal
Gamma0.6135
Magnitude1.0357
Maximum eclipse
Duration155 sec (2 m 35 s)
Coordinates60.5°N 4.2°E / 60.5; 4.2
Max. width of band153 km (95 mi)
Times (UTC)
Greatest eclipse12:32:38
References
Saros126 (44 of 72)
Catalog # (SE5000)9408

Visibility

Totality began at sunrise over the United States over Nebraska, South Dakota, Minnesota, and Wisconsin, and crossed into Canada, across southern Greenland, Iceland and Faroe Islands, then into Europe, across Norway, Sweden, and eastern Europe.[1] It ended before sunset over Iran, Afghanistan, Pakistan, and ending in northwestern India. The southwestern part of Vilnius, northeastern part of Kiev, southwestern part of Baku were covered by the path of totality.

The northeastern part of Mount Elbrus, the highest mountain in Europe, also lies in the path of totality.

Solar eclipses of 1953–1956

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[2]

Note: Partial solar eclipse of February 14, 1953 and August 9, 1953 belong to the last lunar year set.

Saros 126

It is a part of Saros cycle 126, repeating every 18 years, 11 days, containing 72 events. The series started with partial solar eclipse on March 10, 1179. It contains annular eclipses from June 4, 1323 through April 4, 1810, hybrid eclipses from April 14, 1828 through May 6, 1864 and total eclipses from May 17, 1882 through August 23, 2044. The series ends at member 72 as a partial eclipse on May 3, 2459. The longest duration of central eclipse (annular or total) was 6 minutes, 30 seconds of annularity on June 26, 1359. The longest duration of totality was 2 minutes, 36 seconds on July 10, 1972. All eclipses in this series occurs at the Moon’s descending node.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

See also

Notes

  1. Geneslay E., Meeus J., Schock P., Hujer, K. : « L’éclipse totale de Soleil du 30 juin 1954 », l'Astronomie, vol. 68, p. 422
  2. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.