141 (number)
141 (one hundred [and] forty-one) is the natural number following 140 and preceding 142.
| ||||
---|---|---|---|---|
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] | ||||
Cardinal | one hundred forty-one | |||
Ordinal | 141st (one hundred forty-first) | |||
Factorization | 3 × 47 | |||
Divisors | 1, 3, 47, 141 | |||
Greek numeral | ΡΜΑ´ | |||
Roman numeral | CXLI | |||
Binary | 100011012 | |||
Ternary | 120203 | |||
Octal | 2158 | |||
Duodecimal | B912 | |||
Hexadecimal | 8D16 |
In mathematics
141 is:
- a centered pentagonal number.[1]
- the sum of the sums of the divisors of the first 13 positive integers.[2]
- the second n to give a prime Cullen number (of the form n2n + 1).[3]
- an undulating number in base 10, with the previous being 131, and the next being 151.
- the sixth hendecagonal (11-gonal) number.[4]
- a semiprime: a product of two prime numbers, namely 3 and 47. Since those prime factors are Gaussian primes, this means that 141 is a Blum integer.
- a Hilbert prime
In the military
- The Lockheed C-141 Starlifter was a United States Air Force military strategic airlifter
- K-141 Kursk was a Russian nuclear cruise missile submarine, which sank in the Barents Sea August 12, 2000
- USS Alchemy (AM-141) was a United States Navy Admirable-class minesweeper ship during World War II
- USS Buckingham (APA-141) was a United States Navy Haskell-class attack transport during World War II
- USS General A. W. Greely (AP-141) was a United States Navy General G. O. Squier-class transport during World War II
- USS Hamilton (DD-141) was a United States Navy Wickes-class destroyer following World War I
- USS Hill (DE-141) was a United States Navy Edsall-class destroyer escort during World War II
In transportation
- London Buses route 141 is a Transport for London contracted bus route in London
- The 141 C Ouest was a 2-8-2 steam locomotive of the Chemin de fer de l'État
- British Rail Class 141 was the first production model of the Pacer diesel multiple units
- Union des Transports Africains de Guinée Flight 141, which crashed in the Bight of Benin on December 25, 2003
- The Saipa 141 car produced by SAIPA
- The Córas Iompair Éireann 141 class locomotive from General Motors Electro-Motive Division in 1962
In other fields
141 is also:
- The year AD 141 or 141 BC
- 141 AH is a year in the Islamic calendar that corresponds to 759 – 760 CE
- 141 Lumen is a dark C-type, rocky asteroid orbiting in the asteroid belt
- The atomic number of unquadunium, a temporary chemical element
- The telephone dialing prefix for withholding one’s Caller ID in the United Kingdom
- Psalm 141
- Sonnet 141 by William Shakespeare
See also
References
- "Sloane's A005891 : Centered pentagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-27.
- Sloane, N. J. A. (ed.). "Sequence A024916 (sum_{k=1..n} sigma(k) where sigma(n) = sum of divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Wells, D. The Penguin Dictionary of Curious and Interesting Numbers London: Penguin Group. (1987): 139
- "Sloane's A051682 : 11-gonal (or hendecagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-27.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.