123 (number)
123 (one hundred [and] twenty-three) is the natural number following 122 and preceding 124. After 1 and 12 it is the 3rd number to be concatenation of first n integers. Here n=3.
| ||||
---|---|---|---|---|
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] | ||||
Cardinal | one hundred twenty-three | |||
Ordinal | 123rd (one hundred twenty-third) | |||
Factorization | 3 × 41 | |||
Divisors | 1, 3, 41, 123 | |||
Greek numeral | ΡΚΓ´ | |||
Roman numeral | CXXIII | |||
Binary | 11110112 | |||
Ternary | 111203 | |||
Octal | 1738 | |||
Duodecimal | A312 | |||
Hexadecimal | 7B16 |
In mathematics
- 123 is a Lucas number.[1] It is the eleventh member of the Mian-Chowla sequence.[2]
- Along with 6, 123 is one of only two positive integers that is simultaneously two more than a perfect square and two less than a perfect cube (123 = 112 + 2 = 53 - 2).[3]
In religion
The Book of Numbers says that Aaron died at the age of 123.[4]
In telephony
- The emergency telephone number in Colombia
- The telephone number of the speaking clock for the correct time in the United Kingdom
- The electricity (PLN) emergency telephone number in Indonesia
- The medical emergency telephone number in Egypt
- The Notation for national and international telephone numbers Recommendation ITU-T Recommendation E.123 defines a standard way to write telephone numbers, e-mail addresses, and web addresses
In other fields
123 is also:
- 123 (film), a 2002 Indian film
- 123 (interbank network), shared cash network in Egypt
- 123 (New Jersey bus)
- "1-2-3", 1965 song written and recorded by Len Barry
- The atomic number of the yet-to-be-discovered element unbitrium
See also
- 1-2-3 (disambiguation)
- 123rd (disambiguation)
- AD 123
- 123 BC
- List of highways numbered 123
- Section 123 Agreement of the U.S. Atomic Energy Act of 1954
- United Nations Security Council Resolution 123
- Japan Airlines Flight 123, world's deadliest single-aircraft accident in history
- Raz, Dwa, Trzy, Polish music band
- Raz, dwa, trzy (newspaper), Polish sports weekly
- Sonnet 123 by William Shakespeare
- The Lotus 1-2-3 spreadsheet program
References
- Friedman, Erich (30 April 2005). "What's Special About This Number?". Stetson University. Archived from the original on 10 February 2010. Retrieved 2010-02-08.
- "Mian-Chowla Sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 2016-04-19. Retrieved 2016-04-19.
- Conrad, Keith. "Examples of Mordell's Equation" (PDF). University of Connecticut, Mathematics Department. Retrieved 2017-06-24.
- Numbers 33:39
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.