147 (number)
147 (one hundred [and] forty-seven) is the natural number following 146 and preceding 148.
| ||||
---|---|---|---|---|
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] | ||||
Cardinal | one hundred forty-seven | |||
Ordinal | 147th (one hundred forty-seventh) | |||
Factorization | 3 × 72 | |||
Divisors | 1, 3, 7, 21, 49, 147 | |||
Greek numeral | ΡΜΖ´ | |||
Roman numeral | CXLVII | |||
Binary | 100100112 | |||
Ternary | 121103 | |||
Octal | 2238 | |||
Duodecimal | 10312 | |||
Hexadecimal | 9316 |
In mathematics
The digits forming 147 also form the left-hand column of a normal decimal numeric keypad.
The binary form of 147 contains all the two-digit binary numbers (00, 01, 10 and 11).
In the military
- BQM-147 Dragon unmanned aerial vehicle is a tactical battlefield UAV operated by the US Marine Corps
- Ryan Model 147 Lightning Bug was a drone, or unmanned aerial vehicle during the 1960s
- USS Assail (AM-147) was a United States Navy Admirable-class minesweeper during World War II
- USS Blair (DE-147) was a United States Navy Edsall-class destroyer escort during World War II
- USS Cottle (APA-147) was a United States Navy Haskell-class attack transport during World War II
- USS General E. T. Collins (AP-147) was a United States Navy General G. O. Squier-class transport ship during World War II
- USS Roper (DD-147) was a United States Navy Wickes-class destroyer during World War II
- USS Truckee (AO-147) was a United States Navy Neosho-class fleet oiler of the United States Navy during the Six-Day War
In snooker
- The highest possible break in snooker, in the absence of fouls and refereeing errors
- 147-Break is a 1983 documentary with Steve Davis, an English professional snooker player
- The Snooker 147 PlayStation 2 game
In transportation
- The Volkswagen Type 147 Kleinlieferwagen, produced from 1964 to 1974
- The Fiat 147 was a three-door hatchback compact car produced in Brazil from 1976 until 1986
- The Alfa Romeo 147 car, produced since 2000
- The first generation Lexus GS 300 is JZS147
- 147th Street (Sibley Boulevard) Metra Electric station in Harvey, Illinois
In other fields
147 is also:
- The year AD 147 or 147 BC
- 147 AH is a year in the Islamic calendar that corresponds to 764 – 765 CE
- 147 Protogeneia is a large main belt asteroid with a low eccentricity and low inclination
- NGC 147 (DDO3) is a Dwarf spheroidal galaxy about 2.58 million light-years away in the constellation Cassiopeia
- Promethium-147 is an isotope of promethium with a half-life of 2.62 years
- JWH-147 is an analgesic drug used in scientific research, which acts as a cannabinoid agonist at both the CB1 and CB2 receptors
- Sonnet 147
See also
References
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.