260 (number)

260 (two hundred [and] sixty) is the natural number following 259 and preceding 261.

259 260 261
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]
Cardinaltwo hundred sixty
Ordinal260th
(two hundred sixtieth)
Factorization22 × 5 × 13
Greek numeralΣΞ´
Roman numeralCCLX
Binary1000001002
Ternary1001223
Octal4048
Duodecimal19812
Hexadecimal10416

It is also the magic constant of the n×n normal magic square and n-queens problem for n = 8, the size of an actual chess board.

260 is also the magic constant of the Franklin magic square devised by Benjamin Franklin.

526141320293645
143625146353019
536051221283744
116595443382722
555871023263942
98575641402524
506321518313447
161644948333217

The minor diagonal gives 260, and in addition a number of combinations of two half diagonals of four numbers from a corner to the center give 260.

260 are the days in Mayan sacred calendar Tzolkin.

260 may also refer to the years AD 260 and 260 BC.

Integers from 261 to 269

261

261 = 32·29, lucky number, nonagonal number, Harshad number, unique period in base 2, number of possible unfolded tesseract patterns. 261 was once the lowest number not to have its own Wikipedia page, this making it a candidate for the lowest "uninteresting number" according to the definition given by Alex Bellos.[1]

262

262 = 2·131, meandric number, open meandric number, untouchable number, happy number, palindrome number, semiprime. 262 is currently the lowest number not to have its own Wikipedia page, this making it a candidate for the lowest "uninteresting number" according to the definition given by Alex Bellos.[2]

263

263 is a prime, safe prime, happy number, sum of five consecutive primes (43 + 47 + 53 + 59 + 61), balanced prime, Chen prime, Eisenstein prime with no imaginary part, strictly non-palindromic number, Bernoulli irregular prime, Euler irregular prime, Gaussian prime, full reptend prime, Solinas prime, Ramanujan prime.

264

264 = 23·3·11, Harshad number. If you take the sum of all 2-digit numbers you can make from 264, you get 264: 24 + 42 + 26 + 62 + 46 + 64 = 264. 132 and 396 share this property.[3]

264 equals the sum of the squares of the digits of its own square in base 15. This property is shared with 1, 159, 284, 306 and 387.

265

265 = 5·53, semiprime, Padovan number, number of derangements of 6 elements, centered square number, Smith number, subfactorial 6.

266

266 = 2·7·19, sphenic number, Harshad number, nontotient, noncototient, self number, repdigit in base 11 (222). 266 is also the index of the largest proper subgroups of the sporadic group known as the Janko group J1.

267

267 = 3·89, semiprime, the number of groups of order 64.[4]

268

268 = 22·67, noncototient, untouchable number

269

269 is a prime, twin prime with 271, sum of three consecutive primes (83 + 89 + 97), Chen prime, Eisenstein prime with no imaginary part, highly cototient number, strictly non-palindromic number, full reptend prime

References

  1. Bellos, Alex (June 2014). The Grapes of Math: How Life Reflects Numbers and Numbers Reflect Life. illus. The Surreal McCoy (1st Simon & Schuster hardcover ed.). N.Y.: Simon & Schuster. pp. 238 & 319 (quoting p. 319). ISBN 978-1-4516-4009-0.
  2. Bellos, Alex (June 2014). The Grapes of Math: How Life Reflects Numbers and Numbers Reflect Life. illus. The Surreal McCoy (1st Simon & Schuster hardcover ed.). N.Y.: Simon & Schuster. pp. 238 & 319 (quoting p. 319). ISBN 978-1-4516-4009-0.
  3. Wells, D. The Penguin Dictionary of Curious and Interesting Numbers London: Penguin Group. (1987): 138
  4. Number of groups of order n
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.