97 (number)
97 (ninety-seven) is the natural number following 96 and preceding 98. It is a prime number.
| ||||
---|---|---|---|---|
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] | ||||
Cardinal | ninety-seven | |||
Ordinal | 97th (ninety-seventh) | |||
Factorization | prime | |||
Prime | 25th | |||
Divisors | 1, 97 | |||
Greek numeral | ϞΖ´ | |||
Roman numeral | XCVII | |||
Binary | 11000012 | |||
Ternary | 101213 | |||
Octal | 1418 | |||
Duodecimal | 8112 | |||
Hexadecimal | 6116 |
In mathematics
97 is:
- the 25th prime number (the largest two-digit prime number in base 10), following 89 and preceding 101.
- a Proth prime as it is 3 × 25 + 1.[1]
- the eleventh member of the Mian–Chowla sequence.[2]
- a self number in base 10, since there is no integer that added to its own digits adds up to 97.[3]
- the highest two digit number where the sum of its digits is a square.
The numbers 97, 907, 9007, 90007 and 900007 are happy primes. However, 9000007 (read as nine million seven) is composite and has the factorisation 277 × 32491.
In science
Ninety-seven is:
- The atomic number of berkelium, an actinide.
In astronomy
- Messier object M97, a magnitude 12.0 planetary nebula in the constellation Ursa Major, also known as the Owl Nebula
- The New General Catalogue object NGC 97, an elliptical galaxy in the constellation Andromeda
In other fields
Ninety-seven is:
- The 97th United States Congress met during the Ronald Reagan administration, from January 1981 to January 1983
- The 10-97 police code means "arrived on the scene"
- STS-97 Space Shuttle Endeavour mission launched November 30, 2000
- The 97th Infantry Division was a unit of the United States Army in World War I and World War II
- Madden NFL 97 was the first John Madden NFL American football game to be created in the 32-bit gaming era
- Radio stations broadcasting on frequencies near 97, such as Hot 97, New York City and 97X, Tampa, Florida
- The decimal unicode number representing the latin lowercase "a"[4]
In music
- A song Baby Boy / Saturday Night '97 by Whigfield
- The number of the Southern Railway train in the Wreck of the Old 97, a ballad recorded by numerous artists, including Flatt and Scruggs, Woody Guthrie, Johnny Cash, Nine Pound Hammer, and Hank Snow.
- The Old 97's are an alt-country band, which took their name from the song "The Wreck of the Old ‘97".
- A song by Alkaline Trio off their self-titled album
- The Marching 97, marching band of Lehigh University.
In sports
- The car number of Kurt Busch's Ford when he won the 2004 NASCAR Nextel Cup Series championship.
See also
References
- "Sloane's A080076 : Proth primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
- "Sloane's A005282 : Mian-Chowla sequence". The On-Line Encyclopedia of integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
- "Sloane's A003052 : Self numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
- https://unicodelookup.com/
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.