Transforming growth factor
Transforming growth factor (sometimes referred to as tumor growth factor, or TGF) is used to describe two classes of polypeptide growth factors, TGFα and TGFβ.
The name "Transforming Growth Factor" is somewhat arbitrary, since the two classes of TGFs are not structurally or genetically related to one another, and they act through different receptor mechanisms. Furthermore, they do not always induce cellular transformation, and are not the only growth factors that induce cellular transformation.
Types
- TGFα is upregulated in some human cancers. It is produced in macrophages, brain cells, and keratinocytes, and induces epithelial development. It belongs to the EGF family.
- TGFβ exists in three known subtypes in humans, TGFβ1, TGFβ2, and TGFβ3. These are upregulated in Marfan's syndrome[1][2] and some human cancers, and play crucial roles in tissue regeneration, cell differentiation, embryonic development, and regulation of the immune system. Isoforms of transforming growth factor-beta (TGF-β1) are also thought to be involved in the pathogenesis of pre-eclampsia. TGFβ receptors are single pass serine/threonine kinase receptors. They belong to the transforming growth factor beta family.
Function
These proteins were originally characterized by their capacity to induce oncogenic transformation in a specific cell culture system, rat kidney fibroblasts. Application of the transforming growth factors to normal rat kidney fibroblasts induces the cultured cells to proliferate and overgrow, no longer subject to the normal inhibition caused by contact between cells.
References
- Matt, P; Schoenhoff, F; Habashi, J; Holm, T; Van Erp, C; Loch, D; Carlson, OD; Griswold, BF; Fu, Q; De Backer, J; Loeys, B; Huso, DL; McDonnell, NB; Van Eyk, JE; Dietz, HC (Aug 2009). "Circulating transforming growth factor-{beta} in Marfan syndrome". Circulation. 120 (6): 526–32. doi:10.1161/CIRCULATIONAHA.108.841981. PMC 2779568. PMID 19635970.
- Inhibiting TGF to help Marfan
External links
- Tumor growth factor (TGF) citations
- Hoffmann, R.; Valencia, A. (2004). "A gene network for navigating the literature". Nature Genetics. 36: 664. doi:10.1038/ng0704-664. PMID 15226743.
- Transforming+Growth+Factors at the US National Library of Medicine Medical Subject Headings (MeSH)