DNA damage-inducible transcript 3

DNA damage-inducible transcript 3, also known as C/EBP homologous protein (CHOP), is a pro-apoptotic transcription factor that is encoded by the DDIT3 gene.[5][6] It is a member of the CCAAT/enhancer-binding protein (C/EBP) family of DNA-binding transcription factors.[6] The protein functions as a dominant-negative inhibitor by forming heterodimers with other C/EBP members, preventing their DNA binding activity. The protein is implicated in adipogenesis and erythropoiesis, and has an important role in the cell's stress response.[6]

DDIT3
Identifiers
AliasesDDIT3, CEBPZ, CHOP, CHOP-10, CHOP10, GADD153, DNA damage-inducible transcript 3, DNA damage inducible transcript 3, C/EBPzeta, AltDDIT3
External IDsOMIM: 126337 MGI: 109247 HomoloGene: 3012 GeneCards: DDIT3
Gene location (Human)
Chr.Chromosome 12 (human)[1]
Band12q13.3Start57,516,588 bp[1]
End57,521,737 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

1649

13198

Ensembl

ENSG00000175197

ENSMUSG00000025408

UniProt

P35638

P35639

RefSeq (mRNA)

NM_001290183
NM_007837

RefSeq (protein)

NP_001277112
NP_031863

Location (UCSC)Chr 12: 57.52 – 57.52 MbChr 10: 127.29 – 127.3 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Structure

C/EBP proteins are known to have a conserved C-terminal structure, basic leucine zipper domain(bZIP), that is necessary for the formation of DNA-binding capable homodimers or heterodimers with other proteins or members of the C/EBP protein family.[7] CHOP is a relatively small (29kDa) protein that differs from most C/EBP proteins in several amino acid substitutions, which impacts its DNA-binding ability.[8]

CHOP protein structure created with PyMOL

Regulation and function

Due to a variety of upstream and downstream regulatory interactions, CHOP plays an important role in ER stress-induced apoptosis caused by a variety of stimuli such as pathogenic microbial or viral infections, amino acid starvation, mitochondrial stress, neurological diseases and neoplastic diseases.

Under normal physiological conditions, CHOP is ubiquitously present at very low levels.[9] However, under overwhelming ER stress conditions, the expression of CHOP rises sharply along with the activation of apoptotic pathways in a wide variety of cells.[8] Those processes are mainly regulated by three factors: protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol requiring protein 1 (IRE1α)[10][11]

Upstream regulatory pathways

During ER stress, CHOP is mainly induced via activation of the integrated stress response pathways through the subsequent downstream phosphorylation of a translation initiation factor, eukaryotic initiation factor 2α (eIF2α), and induction of a transcription factor, activation transcription factor 4 (ATF4),[12] which converges on the promoters of target genes, including CHOP.

Integrated stress response, and thus CHOP expression, can be induced by

Under ER stress, activated transmembrane protein ATF6 translocates to the nucleus and interacts with ATF/cAMP response elements and ER stress-response elements,[17] binding the promoters and inducing transcription of several genes involved in unfolded protein response (including CHOP, XBP1 and others).[18][19] Thus, ATF6 activates the transcription of both CHOP and XBP-1, while XBP-1 can also upregulate the expression of CHOP.[20]

ER stress also stimulates transmembrane protein IRE1α activity.[21] Upon activation, IRE1α splices the XBP-1 mRNA introns to produce a mature and active XBP-1 protein,[22] that upregulates CHOP expression[23][24][25] IRE1α also stimulates the activation of the apoptotic-signaling kinase-1 (ASK1), which then activates the downstream kinases, Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK),[26] which participate in apoptosis induction along with CHOP.[27] The P38 MAP kinase family phosphorylates Ser78 and Ser81 of CHOP, which induces cell apoptosis.[28] Moreover, research studies found that the JNK inhibitors can suppress CHOP upregulation, indicating that JNK activation is also involved in the modulation of CHOP levels.[29]

Apoptosis induction via Mitochondria-Dependent Pathway

As a transcription factor, CHOP can regulate the expression of many anti-apoptotic and pro-apoptotic genes, including genes encoding the BCL2-family proteins, GADD34 and TRB-3.[30][31] In the CHOP-induced apoptotic pathway, CHOP regulates the expression of BCL2 protein family, that includes anti-apoptotic proteins (BCL2, BCL-XL, MCL-1, and BCL-W) and pro-apoptotic proteins (BAK, BAX, BOK, BIM, PUMA and others).[32][33]

Under ER stress, CHOP can function as either a transcriptional activator or repressor. It forms heterodimers with other C/EBP family transcription factors via bZIP-domain interactions to inhibit the expression of genes responsive to C/EBP family transcription factors, while enhancing the expression of other genes containing a specific 12–14 bp DNA cis-acting element.[34] CHOP can downregulate the expressions of anti-apoptotic BCL2 proteins, and upregulate the expression of proapoptotic proteins (BIM, BAK and BAX expression).[35][36] BAX-BAK oligomerization causes cytochrome c and apoptosis-inducing factor (AIF) release from mitochondria, eventually causing cell death.[37]

TRB3 pseudokinase is upregulated by the ER stress-inducible transcriptional factor, ATF4-CHOP.[38] CHOP interacts with TRB3, which contributes to the induction of apoptosis.[39][40][41] The expression of TRB3 has a pro-apoptotic capacity.[42][43] Therefore, CHOP also regulates apoptosis by upregulating the expression of the TRB3 gene.

Apoptosis induction via Death-Receptor Pathway

Death receptor-mediated apoptosis occurs via activation of death ligands (Fas, TNF, and TRAIL) and death receptors. Upon activation, the receptor protein, Fas-associated death domain protein, forms death-inducing signaling complex, which activates the downstream caspase cascade to induce apoptosis.[44]

A summary of CHOP upstream and downstream pathways

The PERK-ATF4-CHOP pathway can induce apoptosis by binding to the death receptors and upregulating the expression of death receptor 4 (DR4) and DR5. CHOP also interacts with the phosphorylated transcription factor JUN to form a complex that binds to the promoter region of DR4 in lung cancer cells.[44] The N-terminal domain of CHOP interacts with phosphorylated JUN to form a complex that regulates the expression of DR4 and DR5.[44] CHOP also upregulates the expression of DR5 by binding to the 5′-region of the DR5 gene.[45]

Under prolonged ER stress conditions, activation of the PERK-CHOP pathway will permit DR5 protein levels to rise, which accelerates the formation of the death-inducing signaling complex (DISC) and activates caspase-8,[46] leading to apoptosis[47]

Apoptosis induction through other downstream pathways

In addition, CHOP also mediates apoptosis through increasing the expression of the ERO1α (ER reductase)[10] gene, which catalyzes the production of H2O2 in the ER. The highly oxidized state of the ER results in H2O2 leakage into the cytoplasm, inducing the production of reactive oxygen species (ROS) and a series of apoptotic and inflammatory reactions.[10][48][49][50]

The overexpression of CHOP can lead to cell cycle arrest and result in cell apoptosis. At the same time, CHOP-induced apoptosis can also trigger cell death by inhibiting the expression of cell cycle regulatory protein, p21. The p21 protein inhibits the G1 phase of the cell cycle as well as regulates the activity of pre-apoptotic factors. Identified CHOP-p21 relationship may play a role in changing the cell state from adapting to ER stress towards pre-apoptotic activity.[51]

Under most conditions, CHOP can directly bind to the promoters of downstream related genes. However, under specific condition, CHOP can cooperate with other transcription factors to affect apoptosis. Recent studies have shown that Bcl-2-associated athanogene 5 (Bag5) is over-expressed in prostate cancer and inhibits ER stress-induced apoptosis. Overexpression of Bag5 results in decreased CHOP and BAX expression, and increased Bcl-2 gene expression.[52] Bag5 overexpression inhibited ER stress-induced apoptosis in the unfolded protein response by suppressing PERK-eIF2-ATF4 and enhancing the IRE1-Xbp1 activity.[53]

In general, the downstream targets of CHOP regulate the activation of apoptotic pathways, however, the molecular interaction mechanisms behind those processes remain to be discovered.

Interactions

DNA damage-inducible transcript 3 has been shown to interact with [proteins]:

Clinical significance

Role in microbial infection

CHOP-induced apoptosis pathways had been identified in cells infected by

Since CHOP has an important role of apoptosis induction during infection, it is an important target for further research that will help deepen the current understanding of pathogenesis and potentially provide an opportunity for invention of new therapeutic approaches. For example, small molecule inhibitors of CHOP expression may act as therapeutic options to prevent ER stress and microbial infections. Research had shown that small molecule inhibitors of PERK-eIF2α pathway limit PCV2 virus replication.[60]

Role in other diseases

The regulation of CHOP expression plays an important role in metabolic diseases and in some cancers through its function in mediating apoptosis. The regulation of CHOP expression could be a potential approach to affecting cancer cells through the induction of apoptosis.[51][29][44][69] In the intestinal epithelium, CHOP has been demonstrated to be downregulated under inflammatory conditions (in inflammatory bowel diseases and experimental models of colitis). In this context, CHOP seems to rather regulate the cell cycle than apoptotic processes.[70]

Mutations or fusions of CHOP (e.g. with FUS to form FUS-CHOP) can cause Myxoid liposarcoma.[49]

References

  1. GRCh38: Ensembl release 89: ENSG00000175197 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000025408 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Papathanasiou MA, Kerr NC, Robbins JH, McBride OW, Alamo I, Barrett SF, et al. (February 1991). "Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C". Molecular and Cellular Biology. 11 (2): 1009–16. doi:10.1128/MCB.11.2.1009. PMC 359769. PMID 1990262.
  6. "Entrez Gene: DDIT3 DNA-damage-inducible transcript 3".
  7. Ubeda M, Wang XZ, Zinszner H, Wu I, Habener JF, Ron D (April 1996). "Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element". Molecular and Cellular Biology. 16 (4): 1479–89. doi:10.1128/MCB.16.4.1479. PMC 231132. PMID 8657121.
  8. Yao Y, Lu Q, Hu Z, Yu Y, Chen Q, Wang QK (July 2017). "A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and heart failure". Nature Communications. 8 (1): 133. Bibcode:2017NatCo...8..133Y. doi:10.1038/s41467-017-00171-w. PMC 5527107. PMID 28743963.
  9. Ron D, Habener JF (March 1992). "CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription". Genes & Development. 6 (3): 439–53. doi:10.1101/gad.6.3.439. PMID 1547942.
  10. Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, Tabas I (September 2009). "Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis". The Journal of Cell Biology. 186 (6): 783–92. doi:10.1083/jcb.200904060. PMC 2753154. PMID 19752026.
  11. Oyadomari S, Mori M (April 2004). "Roles of CHOP/GADD153 in endoplasmic reticulum stress". Cell Death and Differentiation. 11 (4): 381–9. doi:10.1038/sj.cdd.4401373. PMID 14685163.
  12. Yoshida H (February 2007). "ER stress and diseases". The FEBS Journal. 274 (3): 630–58. doi:10.1111/j.1742-4658.2007.05639.x. PMID 17288551. S2CID 25715028.
  13. Ayaub EA, Kolb PS, Mohammed-Ali Z, Tat V, Murphy J, Bellaye PS, Shimbori C, Boivin FJ, Lai R, Lynn EG, Lhoták Š, Bridgewater D, Kolb MR, Inman MD, Dickhout JG, Austin RC, Ask K (August 2016). "GRP78 and CHOP modulate macrophage apoptosis and the development of bleomycin-induced pulmonary fibrosis". The Journal of Pathology. 239 (4): 411–25. doi:10.1002/path.4738. PMID 27135434.
  14. Lucke-Wold BP, Turner RC, Logsdon AF, Nguyen L, Bailes JE, Lee JM, et al. (March 2016). "Endoplasmic reticulum stress implicated in chronic traumatic encephalopathy". Journal of Neurosurgery. 124 (3): 687–702. doi:10.3171/2015.3.JNS141802. PMID 26381255.
  15. Kropski JA, Blackwell TS (January 2018). "Endoplasmic reticulum stress in the pathogenesis of fibrotic disease". The Journal of Clinical Investigation. 128 (1): 64–73. doi:10.1172/JCI93560. PMC 5749533. PMID 29293089.
  16. Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA, Majsterek I (2016). "The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress". Current Molecular Medicine. 16 (6): 533–44. doi:10.2174/1566524016666160523143937. PMC 5008685. PMID 27211800.
  17. Sano R, Reed JC (December 2013). "ER stress-induced cell death mechanisms". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1833 (12): 3460–3470. doi:10.1016/j.bbamcr.2013.06.028. PMC 3834229. PMID 23850759.
  18. Senkal CE, Ponnusamy S, Bielawski J, Hannun YA, Ogretmen B (January 2010). "Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways". FASEB Journal. 24 (1): 296–308. doi:10.1096/fj.09-135087. PMC 2797032. PMID 19723703.
  19. Xu W, Gao L, Li T, Zheng J, Shao A, Zhang J (September 2018). "Apelin-13 Alleviates Early Brain Injury after Subarachnoid Hemorrhage via Suppression of Endoplasmic Reticulum Stress-mediated Apoptosis and Blood-Brain Barrier Disruption: Possible Involvement of ATF6/CHOP Pathway". Neuroscience. 388: 284–296. doi:10.1016/j.neuroscience.2018.07.023. PMID 30036660. S2CID 51711178.
  20. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K (September 2000). "ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response". Molecular and Cellular Biology. 20 (18): 6755–67. doi:10.1128/mcb.20.18.6755-6767.2000. PMC 86199. PMID 10958673.
  21. Han D, Lerner AG, Vande Walle L, Upton JP, Xu W, Hagen A, et al. (August 2009). "IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates". Cell. 138 (3): 562–75. doi:10.1016/j.cell.2009.07.017. PMC 2762408. PMID 19665977.
  22. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (December 2001). "XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor". Cell. 107 (7): 881–91. doi:10.1016/s0092-8674(01)00611-0. PMID 11779464. S2CID 9460062.
  23. Hetz C, Martinon F, Rodriguez D, Glimcher LH (October 2011). "The unfolded protein response: integrating stress signals through the stress sensor IRE1α". Physiological Reviews. 91 (4): 1219–43. doi:10.1152/physrev.00001.2011. hdl:10533/135654. PMID 22013210.
  24. Yang Y, Liu L, Naik I, Braunstein Z, Zhong J, Ren B (2017). "Transcription Factor C/EBP Homologous Protein in Health and Diseases". Frontiers in Immunology. 8: 1612. doi:10.3389/fimmu.2017.01612. PMC 5712004. PMID 29230213.
  25. Kim I, Xu W, Reed JC (December 2008). "Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities". Nature Reviews. Drug Discovery. 7 (12): 1013–30. doi:10.1038/nrd2755. PMID 19043451. S2CID 7652866.
  26. Wang XZ, Ron D (May 1996). "Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase". Science. 272 (5266): 1347–9. Bibcode:1996Sci...272.1347W. doi:10.1126/science.272.5266.1347. PMID 8650547. S2CID 20439571.
  27. Ron D, Hubbard SR (January 2008). "How IRE1 reacts to ER stress". Cell. 132 (1): 24–6. doi:10.1016/j.cell.2007.12.017. PMID 18191217. S2CID 15705605.
  28. Sari FR, Widyantoro B, Thandavarayan RA, Harima M, Lakshmanan AP, Zhang S, et al. (2011). "Attenuation of CHOP-mediated myocardial apoptosis in pressure-overloaded dominant negative p38α mitogen-activated protein kinase mice". Cellular Physiology and Biochemistry. 27 (5): 487–96. doi:10.1159/000329970. PMID 21691066.
  29. Guo X, Meng Y, Sheng X, Guan Y, Zhang F, Han Z, et al. (January 2017). "Tunicamycin enhances human colon cancer cells to TRAIL-induced apoptosis by JNK-CHOP-mediated DR5 upregulation and the inhibition of the EGFR pathway". Anti-Cancer Drugs. 28 (1): 66–74. doi:10.1097/CAD.0000000000000431. PMID 27603596. S2CID 3570039.
  30. Bromati CR, Lellis-Santos C, Yamanaka TS, Nogueira TC, Leonelli M, Caperuto LC, et al. (January 2011). "UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 300 (1): R92-100. doi:10.1152/ajpregu.00169.2010. PMID 21068199.
  31. Campos G, Schmidt-Heck W, Ghallab A, Rochlitz K, Pütter L, Medinas DB, et al. (June 2014). "The transcription factor CHOP, a central component of the transcriptional regulatory network induced upon CCl4 intoxication in mouse liver, is not a critical mediator of hepatotoxicity". Archives of Toxicology. 88 (6): 1267–80. doi:10.1007/s00204-014-1240-8. hdl:10533/127482. PMID 24748426. S2CID 17713296.
  32. Ghosh AP, Klocke BJ, Ballestas ME, Roth KA (2012-06-28). "CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress". PLOS ONE. 7 (6): e39586. Bibcode:2012PLoSO...739586G. doi:10.1371/journal.pone.0039586. PMC 3386252. PMID 22761832.
  33. Galehdar Z, Swan P, Fuerth B, Callaghan SM, Park DS, Cregan SP (December 2010). "Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA". The Journal of Neuroscience. 30 (50): 16938–48. doi:10.1523/JNEUROSCI.1598-10.2010. PMC 6634926. PMID 21159964.
  34. Ubeda M, Wang XZ, Zinszner H, Wu I, Habener JF, Ron D (April 1996). "Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element". Molecular and Cellular Biology. 16 (4): 1479–89. doi:10.1128/mcb.16.4.1479. PMC 231132. PMID 8657121.
  35. Iurlaro R, Muñoz-Pinedo C (July 2016). "Cell death induced by endoplasmic reticulum stress". The FEBS Journal. 283 (14): 2640–52. doi:10.1111/febs.13598. PMID 26587781.
  36. Tsukano H, Gotoh T, Endo M, Miyata K, Tazume H, Kadomatsu T, et al. (October 2010). "The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques". Arteriosclerosis, Thrombosis, and Vascular Biology. 30 (10): 1925–32. doi:10.1161/ATVBAHA.110.206094. PMID 20651282.
  37. Tuzlak S, Kaufmann T, Villunger A (October 2016). "Interrogating the relevance of mitochondrial apoptosis for vertebrate development and postnatal tissue homeostasis". Genes & Development. 30 (19): 2133–2151. doi:10.1101/gad.289298.116. PMC 5088563. PMID 27798841.
  38. Morse E, Schroth J, You YH, Pizzo DP, Okada S, Ramachandrarao S, et al. (November 2010). "TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP-1". American Journal of Physiology. Renal Physiology. 299 (5): F965-72. doi:10.1152/ajprenal.00236.2010. PMC 2980398. PMID 20660016.
  39. Kopecka J, Salaroglio IC, Righi L, Libener R, Orecchia S, Grosso F, et al. (June 2018). "Loss of C/EBP-β LIP drives cisplatin resistance in malignant pleural mesothelioma". Lung Cancer. 120: 34–45. doi:10.1016/j.lungcan.2018.03.022. PMID 29748013.
  40. Zhang P, Sun Q, Zhao C, Ling S, Li Q, Chang YZ, Li Y (March 2014). "HDAC4 protects cells from ER stress induced apoptosis through interaction with ATF4". Cellular Signalling. 26 (3): 556–63. doi:10.1016/j.cellsig.2013.11.026. PMID 24308964.
  41. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H (March 2005). "TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death". The EMBO Journal. 24 (6): 1243–55. doi:10.1038/sj.emboj.7600596. PMC 556400. PMID 15775988.
  42. Du K, Herzig S, Kulkarni RN, Montminy M (June 2003). "TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver". Science. 300 (5625): 1574–7. Bibcode:2003Sci...300.1574D. doi:10.1126/science.1079817. PMID 12791994. S2CID 43360696.
  43. Li Y, Zhu D, Hou L, Hu B, Xu M, Meng X (January 2018). "TRB3 reverses chemotherapy resistance and mediates crosstalk between endoplasmic reticulum stress and AKT signaling pathways in MHCC97H human hepatocellular carcinoma cells". Oncology Letters. 15 (1): 1343–1349. doi:10.3892/ol.2017.7361. PMC 5769383. PMID 29391905.
  44. Li T, Su L, Lei Y, Liu X, Zhang Y, Liu X (April 2015). "DDIT3 and KAT2A Proteins Regulate TNFRSF10A and TNFRSF10B Expression in Endoplasmic Reticulum Stress-mediated Apoptosis in Human Lung Cancer Cells". The Journal of Biological Chemistry. 290 (17): 11108–18. doi:10.1074/jbc.M115.645333. PMC 4409269. PMID 25770212.
  45. Chen P, Hu T, Liang Y, Li P, Chen X, Zhang J, et al. (August 2016). "Neddylation Inhibition Activates the Extrinsic Apoptosis Pathway through ATF4-CHOP-DR5 Axis in Human Esophageal Cancer Cells". Clinical Cancer Research. 22 (16): 4145–57. doi:10.1158/1078-0432.CCR-15-2254. PMID 26983464.
  46. Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, Kimmig P, Mendez AS, et al. (July 2014). "Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis". Science. 345 (6192): 98–101. Bibcode:2014Sci...345...98L. doi:10.1126/science.1254312. PMC 4284148. PMID 24994655.
  47. Elmore S (June 2007). "Apoptosis: a review of programmed cell death". Toxicologic Pathology. 35 (4): 495–516. doi:10.1080/01926230701320337. PMC 2117903. PMID 17562483.
  48. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, et al. (December 2004). "CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum". Genes & Development. 18 (24): 3066–77. doi:10.1101/gad.1250704. PMC 535917. PMID 15601821.
  49. Panagopoulos I, Höglund M, Mertens F, Mandahl N, Mitelman F, Aman P (February 1996). "Fusion of the EWS and CHOP genes in myxoid liposarcoma". Oncogene. 12 (3): 489–94. PMID 8637704.
  50. Li G, Scull C, Ozcan L, Tabas I (December 2010). "NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis". The Journal of Cell Biology. 191 (6): 1113–25. doi:10.1083/jcb.201006121. PMC 3002036. PMID 21135141.
  51. Mkrtchian S (June 2015). "Targeting unfolded protein response in cancer and diabetes". Endocrine-Related Cancer. 22 (3): C1-4. doi:10.1530/ERC-15-0106. PMID 25792543.
  52. Gupta MK, Tahrir FG, Knezevic T, White MK, Gordon J, Cheung JY, et al. (August 2016). "GRP78 Interacting Partner Bag5 Responds to ER Stress and Protects Cardiomyocytes From ER Stress-Induced Apoptosis". Journal of Cellular Biochemistry. 117 (8): 1813–21. doi:10.1002/jcb.25481. PMC 4909508. PMID 26729625.
  53. Bruchmann A, Roller C, Walther TV, Schäfer G, Lehmusvaara S, Visakorpi T, et al. (March 2013). "Bcl-2 associated athanogene 5 (Bag5) is overexpressed in prostate cancer and inhibits ER-stress induced apoptosis". BMC Cancer. 13: 96. doi:10.1186/1471-2407-13-96. PMC 3598994. PMID 23448667.
  54. Chen BP, Wolfgang CD, Hai T (March 1996). "Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10". Molecular and Cellular Biology. 16 (3): 1157–68. doi:10.1128/MCB.16.3.1157. PMC 231098. PMID 8622660.
  55. Ubeda M, Vallejo M, Habener JF (November 1999). "CHOP enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins". Molecular and Cellular Biology. 19 (11): 7589–99. doi:10.1128/MCB.19.11.7589. PMC 84780. PMID 10523647.
  56. Hattori T, Ohoka N, Hayashi H, Onozaki K (April 2003). "C/EBP homologous protein (CHOP) up-regulates IL-6 transcription by trapping negative regulating NF-IL6 isoform". FEBS Letters. 541 (1–3): 33–9. doi:10.1016/s0014-5793(03)00283-7. PMID 12706815. S2CID 43792576.
  57. Fawcett TW, Eastman HB, Martindale JL, Holbrook NJ (June 1996). "Physical and functional association between GADD153 and CCAAT/enhancer-binding protein beta during cellular stress". The Journal of Biological Chemistry. 271 (24): 14285–9. doi:10.1074/jbc.271.24.14285. PMID 8662954.
  58. Ubeda M, Habener JF (October 2003). "CHOP transcription factor phosphorylation by casein kinase 2 inhibits transcriptional activation". The Journal of Biological Chemistry. 278 (42): 40514–20. doi:10.1074/jbc.M306404200. PMID 12876286.
  59. Cui K, Coutts M, Stahl J, Sytkowski AJ (March 2000). "Novel interaction between the transcription factor CHOP (GADD153) and the ribosomal protein FTE/S3a modulates erythropoiesis". The Journal of Biological Chemistry. 275 (11): 7591–6. doi:10.1074/jbc.275.11.7591. PMID 10713066.
  60. Zhou Y, Qi B, Gu Y, Xu F, Du H, Li X, Fang W (February 2016). "Porcine Circovirus 2 Deploys PERK Pathway and GRP78 for Its Enhanced Replication in PK-15 Cells". Viruses. 8 (2): 56. doi:10.3390/v8020056. PMC 4776210. PMID 26907328.
  61. Ma R, Yang L, Niu F, Buch S (January 2016). "HIV Tat-Mediated Induction of Human Brain Microvascular Endothelial Cell Apoptosis Involves Endoplasmic Reticulum Stress and Mitochondrial Dysfunction". Molecular Neurobiology. 53 (1): 132–142. doi:10.1007/s12035-014-8991-3. PMC 4787264. PMID 25409632.
  62. Shah A, Vaidya NK, Bhat HK, Kumar A (January 2016). "HIV-1 gp120 induces type-1 programmed cell death through ER stress employing IRE1α, JNK and AP-1 pathway". Scientific Reports. 6: 18929. Bibcode:2016NatSR...618929S. doi:10.1038/srep18929. PMC 4703964. PMID 26740125.
  63. Liao Y, Fung TS, Huang M, Fang SG, Zhong Y, Liu DX (July 2013). "Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway". Journal of Virology. 87 (14): 8124–34. doi:10.1128/JVI.00626-13. PMC 3700216. PMID 23678184.
  64. Lim YJ, Choi JA, Choi HH, Cho SN, Kim HJ, Jo EK, et al. (2011). "Endoplasmic reticulum stress pathway-mediated apoptosis in macrophages contributes to the survival of Mycobacterium tuberculosis". PLOS ONE. 6 (12): e28531. Bibcode:2011PLoSO...628531L. doi:10.1371/journal.pone.0028531. PMC 3237454. PMID 22194844.
  65. Seimon TA, Kim MJ, Blumenthal A, Koo J, Ehrt S, Wainwright H, et al. (September 2010). "Induction of ER stress in macrophages of tuberculosis granulomas". PLOS ONE. 5 (9): e12772. Bibcode:2010PLoSO...512772S. doi:10.1371/journal.pone.0012772. PMC 2939897. PMID 20856677.
  66. Akazawa Y, Isomoto H, Matsushima K, Kanda T, Minami H, Yamaghchi N, et al. (2013). "Endoplasmic reticulum stress contributes to Helicobacter pylori VacA-induced apoptosis". PLOS ONE. 8 (12): e82322. Bibcode:2013PLoSO...882322A. doi:10.1371/journal.pone.0082322. PMC 3862672. PMID 24349255.
  67. Lee SY, Lee MS, Cherla RP, Tesh VL (March 2008). "Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells". Cellular Microbiology. 10 (3): 770–80. doi:10.1111/j.1462-5822.2007.01083.x. PMID 18005243. S2CID 29450691.
  68. Park JY, Jeong YJ, Park SK, Yoon SJ, Choi S, Jeong DG, et al. (October 2017). "Shiga Toxins Induce Apoptosis and ER Stress in Human Retinal Pigment Epithelial Cells". Toxins. 9 (10): 319. doi:10.3390/toxins9100319. PMC 5666366. PMID 29027919.
  69. Wang HQ, Du ZX, Zhang HY, Gao DX (July 2007). "Different induction of GRP78 and CHOP as a predictor of sensitivity to proteasome inhibitors in thyroid cancer cells". Endocrinology. 148 (7): 3258–70. doi:10.1210/en.2006-1564. PMID 17431003.
  70. Waldschmitt N, Berger E, Rath E, Sartor RB, Weigmann B, Heikenwalder M, et al. (November 2014). "C/EBP homologous protein inhibits tissue repair in response to gut injury and is inversely regulated with chronic inflammation". Mucosal Immunology. 7 (6): 1452–66. doi:10.1038/mi.2014.34. PMID 24850428.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.